题目内容

已知a∈R,函数f(x)=x2|x-a|.

(1)当a=2时,求使f(x)>x成立的x的集合;

(2)求f(x)在区间[1,2]上的最小值.

解:(1)当a=2时,f(x)=x2|x-2|,?

x<2时,f(x)=x2(2-x)>x,解得x<0.                                                                ?

x≥2时,f(x)=x2(x-2)>x,解得x>1+2,?

∴所求x的集合为{x|x<0或x>1+2}.                                                                      ?

(2)设此最小值为M,?

①当a≤1时,在区间[1,2]上,f(x)=x3-ax2,?

因为f′(x)=3x2-2ax=3x(x-a)>0(x∈[1,2]),??

所以f(x)在[1,2]上递增.?

M=f(1)=1-a.                                                                                                        ?

②当1<a≤2时,在区间[1,2]上,?

f(x)=x2|x-a|≥0,且f(a)=0.?

M=f(a)=0.                                                                                                           ?

③当a>2时,在区间[1,2]上,f(x)=ax2-x3,?

f′(x)=2ax-3x2=3x(a-x),?

a≥3,在区间(1,2)内有f′(x)>0,从而f(x)在[1,2]上递增,

M=f(1)=a-1.?

若2<a<3,则1<a<2,当x∈(1,a)时,f′(x)>0;??

x∈(a,2)时,f′(x)<0,故f(x)在[1,a]上递增,在区间[a,2]上递减,因此M=min{f(1),f(2)}.?

f(1)<f(2),即a-1<4(a-2),即a<3时,M=f(1)=a-1.?

f(1)≥f(2),即a-1≥4(a-2),即2<a时,M=f(2)=4(a-2).                             ?

综合上述,所求函数f(x)的最小值?

m=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网