题目内容

如图,在长方体ABCD-A1B1C1D1中,AD=AA1,AB=2,点E在棱AB上.
(1)证明:D1E⊥A1D;
(2)当E点为线段AB的中点时,求异面直线D1E与AC所成角的余弦值;
(3)试问E点在何处时,平面D1EC与平面AA1D1D所成二面角的平面角的余弦值为
6
6

以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,
设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A=(1,0,0),C(0,2,0).…(2分)
(1)因为
DA1
=(1,0,1),
D1E
=(1,x,-1)
DA1
D1E
=1+0-1=0,所以D1E⊥A1D;
(2)因为E为AB中点,则E(1,1,0),
从而
D1E
=(1,1,-1),
AC
=(-1,2,0),
设AC与D1E所成的角为θ
cosθ=
|
AC
D1E
|
|
AC
||
D1E
|
=
|-1+2+0|
5
3
=
15
15
…(9分)
(3)设平面D1EC的法向量为
n
=(a,b,c),
CE
=(1,x-2,0),
D1C
=(0,2,-1),
DD1
=(0,0,1)
n
D1C
=0
n
CE
=0
,有
2b-c=0
a+b(x-2)=0

令b=1,从而c=2,a=2-x
n
=(2-x,1,2),…..(12分)
由题意,cos θ=
n
AB
|
n
|•|
AB
|
=
2
2
(x-2)2+5
=
6
6

∴x=3(不合题意,舍去),或x=1.
∴当AE=1,即E为线段AB的中点时,平面D1EC与平面AA1D1D所成二面角的平面角的余弦值为
6
6
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网