题目内容
已知非零向量,和满足(+)•=0,且=,则三角形ABC是
- A.等边三角形
- B.等腰非直角三角形
- C.非等腰三角形
- D.等腰直角三角形
D
分析:由非零向量,和满足(+)•=0,知∠A的角平分线与BC边垂直,由=,知cos∠C=,由此能导出△ABC为等腰直角三角形.
解答:∵非零向量,和满足(+)•=0,
∴∠A的角平分线与BC边垂直,
∴△ABC为等腰三角形,
∵=,
∴cos∠C==,
∴∠C为45度,
故△ABC为等腰直角三角形.
故选D.
点评:本题考查向量在几何中的应用,是中档题.解题时要认真审题,仔细解答,注意平面向量数量积的合理运用.
分析:由非零向量,和满足(+)•=0,知∠A的角平分线与BC边垂直,由=,知cos∠C=,由此能导出△ABC为等腰直角三角形.
解答:∵非零向量,和满足(+)•=0,
∴∠A的角平分线与BC边垂直,
∴△ABC为等腰三角形,
∵=,
∴cos∠C==,
∴∠C为45度,
故△ABC为等腰直角三角形.
故选D.
点评:本题考查向量在几何中的应用,是中档题.解题时要认真审题,仔细解答,注意平面向量数量积的合理运用.
练习册系列答案
相关题目