题目内容

10.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,则z=x+2y的最小值为(  )
A.-3B.-1C.13D.-5

分析 作出不等式组对应的平面区域,利用z的几何意义即可得到结论.

解答 解:作出不等式组对应的平面区域,
由z=x+2y,得y=$-\frac{1}{2}x+\frac{z}{2}$,平移直线y=$-\frac{1}{2}x+\frac{z}{2}$,由图象可知当直线经过点A时,
直线y=$-\frac{1}{2}x+\frac{z}{2}$的截距最小,此时z最小,
由$\left\{\begin{array}{l}{x=3}\\{x+y=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=3}\\{y=-3}\end{array}\right.$,即A(3,-3)
此时z=3+2×(-3)=-3.
故选:A.

点评 本题主要考查线性规划的应用,利用数形结合是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网