题目内容

20.在正方体ABCD-A1B1C1D1中,M是被A1B1的中点,点P是侧面CDD1C1上的动点,且MP∥截面AB1C,则线段MP扫过的图形是(  )
A.中心角为30°的扇形B.直角三角形
C.钝角三角形D.锐角三角形

分析 取CD的中点N,CC1的中点R,B1C1的中点H,证明平面MNRH∥平面AB1C,MP?平面MNRH,线段MP扫过的图形是△MNR,通过证明MN2=NR2+MR2,说明△MNR是直角三角形,

解答 解:取CD的中点N,CC1的中点R,B1C1的中点H,
则MN∥B1C∥HR,MH∥AC,故平面MNRH∥平面AB1C,
MP?平面MNRH,线段MP扫过的图形是△MNR,设AB=2,则$MN=2\sqrt{2}$,$NR=\sqrt{2}$,$MR=\sqrt{6}$,
∴MN2=NR2+MR2
∴△MNR是直角三角形,
故选B.

点评 本题考查空间几何体中点的轨迹,直线与平面的位置关系,考查空间想象能力以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网