题目内容
在数列{an}中,a1=8,an+1=(1+1 |
n+1 |
(1)设bn=
an |
n+1 |
(2)设cn=
bn+1 |
bn-1 |
分析:(1)将已知等式的两边同时除以n+2,得到
-
=2n+3即bn+1-bn=2n+3,利用逐差相加法求出数列{bn}的通项公式;
(2)求出cn=
=1+
-
,利用裂项相消的方法求出数列{cn}的前n项和Sn.
an+1 |
n+2 |
an |
n+1 |
(2)求出cn=
bn+1 |
bn-1 |
1 |
n |
1 |
n+2 |
解答:解:(1)因为a1=8,an+1=(1+
) an+(n+2)(2n+3),(n∈N*),
所以
-
=2n+3
所以bn+1-bn=2n+3
所以b2-b1=5
b3-b2=7
…
bn-bn-1=2n+3
相加得
bn=(n+1)2
(2)cn=
=1+
-
所以前n项和Sn=n+(1-
)+(
-
)+(
-
)…+(
-
)
=n+1+
-
-
=n+
-
-
1 |
n+1 |
所以
an+1 |
n+2 |
an |
n+1 |
所以bn+1-bn=2n+3
所以b2-b1=5
b3-b2=7
…
bn-bn-1=2n+3
相加得
bn=(n+1)2
(2)cn=
bn+1 |
bn-1 |
1 |
n |
1 |
n+2 |
所以前n项和Sn=n+(1-
1 |
3 |
1 |
2 |
1 |
4 |
1 |
3 |
1 |
5 |
1 |
n |
1 |
n+2 |
=n+1+
1 |
2 |
1 |
n+1 |
1 |
n+2 |
=n+
3 |
2 |
1 |
n+1 |
1 |
n+2 |
点评:求数列的前n项和的方法,应该先求出数列的通项,利用通项的特点选择合适的求和方法.
练习册系列答案
相关题目