题目内容

已知A,B,C是直线l上不同的三点,O是l外一点,向量
OA
OB
OC
 满足:
OA
-(
3
2
x2+1)
OB
-[ln(2+3x)-y]
OC
=
0
,记y=f(x).
(1)求函数y=f(x)的解析式:
(2)若关于x的方程f(x)=2x+b在(0,1]上恰有两个不同的实根,求实数b的取值范围;
(3)若对任意x∈[
1
6
1
3
]
,不等式|a-lnx|-ln[f′(x)-3x]>0恒成立,求实数a的取值范围.
分析:(1)由向量
OA
OB
OC
 满足:
OA
-(
3
2
x2+1)
OB
-[ln(2+3x)-y]
OC
=
0
,A,B,C在同一条直线上,知(
3
2
x2+1
)+[ln(2+3x)-y]=1,由此能求出函数y=f(x)的解析式.
(2)由f(x)=2x+b,知b=f(x)-2x=ln(2+3x)+
3
2
x2
-2x,令φ(x)=ln(2+3x)+
3
2
x2-2x(x>-
2
3
)
,利用导数知识能求出b的取值范围.
(3)由已知的不等式解出a的取值范围并得到a的取值使不等式成立即可.
解答:解:(1)∵向量
OA
OB
OC
 满足:
OA
-(
3
2
x2+1)
OB
-[ln(2+3x)-y]
OC
=
0

OA
=(
3
2
x2+1)
OB
+[ln(2+3x)-y]
OC
=
0

又∵A,B,C在同一条直线上,
∴(
3
2
x2+1
)+[ln(2+3x)-y]=1,
∴y=ln(2+3x)+
3
2
x2

故f(x)=ln(2+3x)+
3
2
x2
.…(3分)
(2)∵f(x)=2x+b,f(x)=ln(2+3x)+
3
2
x2

∴b=f(x)-2x=ln(2+3x)+
3
2
x2
-2x,
φ(x)=ln(2+3x)+
3
2
x2-2x(x>-
2
3
)

φ′(x)=
3
2+3x
+3x-2
=
9x2-1
3x+2

∴当x∈(0,
1
3
)时,φ'(x)<0;当x∈(
1
3
,1)
时,φ'(x)>0.
∵φ(0)=ln2,φ(
1
3
)=ln3-
1
2
φ(1)=ln5-
1
2

ln5-
1
2
-ln2=ln
5
2
-
1
2
=ln
5
2
e
>0,
∴b∈(ln3-
1
2
,ln2).
∴b的取值范围是(ln3-
1
2
,ln2)
.…(8分)
(3)由|a-lnx|-ln[f′(x)+3x]>0,
得a>lnx+ln3-ln(2+3x)或a<lnx-ln3+ln(2+3x),
设h(x)=lnx+ln3-ln(2+3x),g(x)=lnx-ln3+ln(2+3x)
依题意知a>h(x)或a<g(x)在x∈[
1
6
1
3
]上恒成立,
∵h′(x)=
2
x(2+3x)
>0,g′(x)=
2+6x
2x+3x2
>0,
∴g(x)与h(x)都在[
1
6
1
3
]上单增,要使不等式成立,
当且仅当a>h(
1
3
)或a<g(
1
6
),即a>ln
1
3
或a<ln
5
36
.…(14分)
点评:本题考查学生利用向量、导数研究函数极值的能力,综合运用方程与函数的能力,以及求导数的能力.解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网