题目内容
【题目】已知四棱锥P-ABCD的底面为等腰梯形, AB∥CD,AC⊥BD,垂足为H, PH是四棱锥的高,E为AD中点,设
1)证明:PE⊥BC;
2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.
【答案】(1)见解析;(2).
【解析】分析:(1)以H为原点,HA,HB,HP所在直线分别为x,y,z轴,建立空间直角
坐标系,利用向量法能证明PE⊥BC;
(2)求出平面PEH的法向量和=(1,0,-1),利用向量法能求出直线PA与平面PEH所成角的正弦值.
详解:以H为原点,HA,HB,HP所在直线分别为x,y,z轴,建立空间直角坐标系如图,则A(1,0,0),B(0,1,0),
(1)证明:设C(m,0,0),P(0,0,n)(m<0,n>0),则D(0,m,0),E(,,0).
可得=(,,-n),=(m,-1,0). 因为·=-+0=0,
所以PE⊥BC.
(2)由已知条件可得m=-,n=1,
故C(-,0,0),D(0,-,0),E(,-,0),
P(0,0,1).设n=(x,y,z)为平面PEH的法向量,
则即
因此可以取n=(1,,0).
由=(1,0,-1),可得|cos〈,n〉|=,
所以直线PA与平面PEH所成角的正弦值为.
【题目】为了解学生暑假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.
男生 | |||||
女生 |
()从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为的概率?
()若从阅读名著不少于本的学生中任选人,设选到的男学生人数为,求随机变量的分布列和数学期望.
()试判断男学生阅读名著本数的方差与女学生阅读名著本数的方程的大小.
【题目】针对国家提出的延迟退休方案,某机构进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:
支持 | 保留 | 不支持 | |
岁以下 | |||
岁以上(含岁) |
(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从持“不支持”态度的人中抽取了人,求的值;
(2)在接受调查的人中,有人给这项活动打出的分数如下:,,,,,,,,,,把这个人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过的概率.
【题目】某商场经营一批进价是每件30元的商品,在市场销售中发现,此商品的销售单价元与日销售量件之间有如下关系
销售单价(元) | 30 | 40 | 45 | 50 |
日销售量(件) | 60 | 30 | 15 | 0 |
(1)在平面直角坐标系中,根据表中提供的数据描出实数对对应的点,并确定与的一个函数关系式;
(2)设经营此商品的日销售利润为元,根据上述关系式写出关于的函数关系式,
并指出销售单价为多少时,才能获得最大日销售利润。