题目内容
2.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(2)+g(2)=( )A. | 13 | B. | -3 | C. | -13 | D. | 3 |
分析 将原代数式中的x替换成-x,再结合着f(x)和g(x)的奇偶性可得f(x)+g(x),再令x=2即可.
解答 解:由f(x)-g(x)=x3+x2+1,将所有x替换成-x,得
f(-x)-g(-x)=-x3+x2+1,
根据f(x)=f(-x),g(-x)=-g(x),得f(x)+g(x)=-x3+x2+1,
再令x=1,计算得,f(2)+g(2)=-3.
故选:B.
点评 本题属于容易题,是对函数奇偶性的考查,在高考中,函数奇偶性的考查一般相对比较基础,学生在掌握好基础知识的前提下,做题应该没有什么障碍.
练习册系列答案
相关题目
12.已知函数f(x)在实数集R上具有下列性质:
①f(x+2)=-f(x);
②f(x+1)是偶函数;
③当x1≠x2∈[1,3]时,(f(x2)-f(x1))(x2-x1)<0.
则f(2011),f(2012),f(2013)的大小关系为( )
①f(x+2)=-f(x);
②f(x+1)是偶函数;
③当x1≠x2∈[1,3]时,(f(x2)-f(x1))(x2-x1)<0.
则f(2011),f(2012),f(2013)的大小关系为( )
A. | f(2011)>f(2012)>f(2013) | B. | f(2012)>f(2011)>f(2013) | ||
C. | f(2013)>f(2011)>f(2012) | D. | f(2013)>f(2012)>f(2011) |