题目内容

2.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(2)+g(2)=(  )
A.13B.-3C.-13D.3

分析 将原代数式中的x替换成-x,再结合着f(x)和g(x)的奇偶性可得f(x)+g(x),再令x=2即可.

解答 解:由f(x)-g(x)=x3+x2+1,将所有x替换成-x,得
f(-x)-g(-x)=-x3+x2+1,
根据f(x)=f(-x),g(-x)=-g(x),得f(x)+g(x)=-x3+x2+1,
再令x=1,计算得,f(2)+g(2)=-3.
故选:B.

点评 本题属于容易题,是对函数奇偶性的考查,在高考中,函数奇偶性的考查一般相对比较基础,学生在掌握好基础知识的前提下,做题应该没有什么障碍.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网