题目内容

已知正项数列an满足:a1=1,n≥2时,(n-1)an2=nan-12+n2-n.
(1)求数列an的通项公式;
(2)设an=2n•bn,数列bn的前n项和为Sn,是否存在正整数m,使得对任意的n∈N*,m-3<Sn<m恒成立?若存在,求出所有的正整数m;若不存在,说明理由.
分析:(1)先由(n-1)an2=nan-12+n2-n得
a
2
n
n
=
a
2
n-1
n-1
+1
,令Bn=
a
2
n
n
可得Bn-Bn-1=1,求出Bn=B1+(n-1)d,利用其结论即可求出数列{an}的通项公式;
(2)先利用错位相减法求出Sn的表达式,进而求出Sn的最大最小值(或范围)即可求出所有的正整数m.
解答:解:(1)由(n-1)an2=nan-12+n2-n
a
2
n
n
=
a
2
n-1
n-1
+1
,令Bn=
a
2
n
n
∴Bn-Bn-1=1(n≥2)
∴Bn=B1+(n-1)d
B1=
a
2
1
1
=1

∴Bn=1+(n-1)•1=n即
a
2
n
n
=n

即an2=n2
由正项数列知an=n(6分)
(2)由an=2n•bnbn=
n
2n

∴sn=b1+b2+…+bn
=
1
2
+
2
22
+
3
23
 +
…+
n
2n
   ①
1
2
sn=
1
22
+
2
23
 +
…+
n
2n+1
   ②
①-②:
1
2
sn=
1
2
+
1
22
+
1
23
+…+
1
2n
-
n
2n+1

∴sn=2-
n+2
2n
sn+1=2-
n+3
2n+1

sn+1-sn=
n+1
2n+1
>0.
∴Snmin=S1=
1
2

而Sn的max→2
∴当m=2或m=3时
使m-3<Sn<m恒成立(13分)
点评:本题主要考查数列递推式的应用以及错位相减求和的应用,错位相减法适用于一等差数列乘一等比数列组合而成的新数列.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网