题目内容

已知正项数列{an}满足a1=1,an+12-nan+1an-(n+1)an2=0
①求{an}通项公式;
②若数列{bn}满足bk=
(2k-1)an
k!(n-k)!
,求{bn}的前n项和Sn
③若数列{cn}满足cn=
1
an
,其前n项和为Tn,证明Tn
43
24
分析:①对数列递推式化简,再叠乘,即可求{an}通项公式;
②确定数列通项,利用倒序相加法,即可求得结论;
③n≤2时,n结论成立;n≥4时,n!>2 n,即可证得结论.
解答:①解:∵an+12-nan+1an-(n+1)an2=0
∴(an+1+an)[an+1-(n+1)an]=0
∵{an}是正项数列,
∴an+1-(n+1)an=0
an+1
an
=n+1
a2
a1
=2,
a3
a2
=3,…,
an
an-1
=n
∵a1=1,∴叠乘可得an=n!;
②解:bk=
(2k-1)an
k!(n-k)!
=
(2k-1)•n!
k!(n-k)!
=(2k-1)•
C
k
n

∴Sn=
C
1
n
+3
C
2
n
+…+(2n-1)•
C
n
n

倒序可得Sn=(2n-1)•
C
n
n
+…+3
C
2
n
+
C
1
n

相加可得:2Sn=(2n-1)•
C
0
n
+(2n-2)•
C
1
n
+…+(2n-2)•
C
n-1
n
+(2n-1)•
C
n
n
=2+(2n-2)•2n
∴Sn=1+(n-1)•2n
③证明:cn=
1
an
=
1
n!

n≤2时,n结论成立;n≥4时,∴n!>2 n
∴其前n项和为Tn<1+
1
2
+
1
6
+
1
16
+…+
1
2n
=
43
24
-
1
2n
43
24

Tn
43
24
点评:本题考查数列递推式,考查数列的通项与求和,考查不等式的证明,综合性强.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网