题目内容
已知正项数列{an}满足a1=1,an+12-nan+1•an-(n+1)an2=0
①求{an}通项公式;
②若数列{bn}满足bk=
,求{bn}的前n项和Sn
③若数列{cn}满足cn=
,其前n项和为Tn,证明Tn<
.
①求{an}通项公式;
②若数列{bn}满足bk=
(2k-1)an |
k!(n-k)! |
③若数列{cn}满足cn=
1 |
an |
43 |
24 |
分析:①对数列递推式化简,再叠乘,即可求{an}通项公式;
②确定数列通项,利用倒序相加法,即可求得结论;
③n≤2时,n结论成立;n≥4时,n!>2 n,即可证得结论.
②确定数列通项,利用倒序相加法,即可求得结论;
③n≤2时,n结论成立;n≥4时,n!>2 n,即可证得结论.
解答:①解:∵an+12-nan+1•an-(n+1)an2=0
∴(an+1+an)[an+1-(n+1)an]=0
∵{an}是正项数列,
∴an+1-(n+1)an=0
∴
=n+1
∴
=2,
=3,…,
=n
∵a1=1,∴叠乘可得an=n!;
②解:bk=
=
=(2k-1)•
∴Sn=
+3
+…+(2n-1)•
,
倒序可得Sn=(2n-1)•
+…+3
+
相加可得:2Sn=(2n-1)•
+(2n-2)•
+…+(2n-2)•
+(2n-1)•
=2+(2n-2)•2n
∴Sn=1+(n-1)•2n;
③证明:cn=
=
,
n≤2时,n结论成立;n≥4时,∴n!>2 n,
∴其前n项和为Tn<1+
+
+
+…+
=
-
<
即Tn<
.
∴(an+1+an)[an+1-(n+1)an]=0
∵{an}是正项数列,
∴an+1-(n+1)an=0
∴
an+1 |
an |
∴
a2 |
a1 |
a3 |
a2 |
an |
an-1 |
∵a1=1,∴叠乘可得an=n!;
②解:bk=
(2k-1)an |
k!(n-k)! |
(2k-1)•n! |
k!(n-k)! |
C | k n |
∴Sn=
C | 1 n |
C | 2 n |
C | n n |
倒序可得Sn=(2n-1)•
C | n n |
C | 2 n |
C | 1 n |
相加可得:2Sn=(2n-1)•
C | 0 n |
C | 1 n |
C | n-1 n |
C | n n |
∴Sn=1+(n-1)•2n;
③证明:cn=
1 |
an |
1 |
n! |
n≤2时,n结论成立;n≥4时,∴n!>2 n,
∴其前n项和为Tn<1+
1 |
2 |
1 |
6 |
1 |
16 |
1 |
2n |
43 |
24 |
1 |
2n |
43 |
24 |
即Tn<
43 |
24 |
点评:本题考查数列递推式,考查数列的通项与求和,考查不等式的证明,综合性强.
练习册系列答案
相关题目