题目内容
已知正项数列{an}满足a1=1,且an+1=
(n∈N*)
(1)求数列的通项an;
(2)求
ak;
(3)求证:2≤
an<3.
an |
2nan+1 |
(1)求数列的通项an;
(2)求
lim |
n→∞ |
n |
k=1 |
2k-1 |
k2+k |
(3)求证:2≤
(2n-1)(1+n)n |
nn |
分析:(1)将等式两边取倒数得
-
=2n,再进行叠加可得an=
;
(2)将第n项裂项求和得1-
,再求极限;
(3)中间的式子可化为(1+
)n=1+
•
+
•(
)2++
(
)n≥2,对于右边的不等式,利用放缩法可证.
1 |
an+1 |
1 |
an |
1 |
2n-1 |
(2)将第n项裂项求和得1-
1 |
n+1 |
(3)中间的式子可化为(1+
1 |
n |
C | n 1 |
1 |
n |
C | n 2 |
1 |
n |
C | n n |
1 |
n |
解答:解:(1)
-
=2n,叠加得:an=
(2)第n项=
•
=
=
-
∴和=1-
∴极限=1.
(3)中间的式子=(1+
)n=1+
•
+
•(
)2++
(
)n≥2.
又1+
•
+
•(
)2++
(
)n
=1+1+
+
++
≤1+1+
+
++
<1+1+
+
++
=3-
<3
1 |
an+1 |
1 |
an |
1 |
2n-1 |
(2)第n项=
2n-1 |
n2+n |
1 |
2n-1 |
1 |
n2+n |
1 |
n |
1 |
n+1 |
1 |
n+1 |
(3)中间的式子=(1+
1 |
n |
C | 1 n |
1 |
n |
C | 2 n |
1 |
n |
C | n n |
1 |
n |
又1+
C | 1 n |
1 |
n |
C | 2 n |
1 |
n |
C | n n |
1 |
n |
=1+1+
n(n-1) |
2!n2 |
n(n-1)(n-2) |
3!n3 |
n(n-1)(n-2)1 |
n!nn |
1 |
2! |
1 |
3! |
1 |
n! |
1 |
2 |
1 |
22 |
1 |
2n-1 |
1 |
2n-1 |
点评:本题主要考查数列通项的求解,考查裂项求和,二项式定理的运用及利用放缩法证明不等式,综合性强.
练习册系列答案
相关题目