题目内容

【题目】我国古代数学家提出的中国剩余定理又称孙子定理,它在世界数学史上具有光辉的一页,堪称数学史上名垂百世的成就,而且一直启发和指引着历代数学家们.定理涉及的是数的整除问题,其数学思想在近代数学、当代密码学研究及日常生活都有着广泛应用,为世界数学的发展做出了巨大贡献,现有这样一个整除问题:将120192019个整数中能被5除余1且被7除余2的数按从小到大的顺序排成一列,构成数列,那么此数列的项数为(

A.56B.57C.58D.59

【答案】C

【解析】

能被5除余1且被7除余2的数就是能被35整除余16的数,运用等差数列通项公式,以及解不等式,即可得到所求项数.

由能被5除余1且被7除余2的数就是能被35整除余16的数,

,由

,所以此数列的项数为58.

故选:C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网