题目内容
【题目】已知的图象在处的切线与直线平行.
(1)求函数的极值;
(2)若,,,求实数的取值范围.
【答案】(1)极大值为,无极小值;(2),.
【解析】
(1)可利用导数的几何意义求出a的值,然后利用函数导数得到函数的单调性,求得函数的极值;
(2)所给不等式含有两个变量,通过变形使两个变量分别在不等式两侧,然后构造新函数g(x),转化为函数的单调性即可求解m的范围.
(1)的导数为,
可得的图象在,(1)处的切线斜率为,
由切线与直线平行,可得,
即,,
,
由,可得,由,可得,
则在递增,在递减,
可得在处取得极大值为,无极小值;
(2)可设,若,,
,可得,
即有,
设在为增函数,
即有对恒成立,
可得在恒成立,
由的导数为得:
当,可得,
在递减,在,递增,
即有在处取得极小值,且为最小值,
可得,
解得,
则实数的取值范围是,.
练习册系列答案
相关题目
【题目】某超强台风登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元,适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图:
经济损失4000元以下 | 经济损失4000元以上 | 合计 | |
捐款超过500元 | 30 | ||
捐款低于500元 | 6 | ||
合计 |
台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如上表,在表格空白处填写正确数字,并说明是否有以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?
附:临界值表
2.072 | 2.706 | 3.841 | 5.024 | 6635 | 7.879 | 10.828 | |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
参考公式: , .