题目内容
(12分)已知定义域为
的偶函数
.
(1)求实数
的值;
(2)判断并证明
的单调性;
(3)若
对任意
恒成立,求实数
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733426303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027334421213.png)
(1)求实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733457299.png)
(2)判断并证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733473448.png)
(3)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027334881757.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733504544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733504337.png)
(1)
;
(2)设
,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027335511238.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027335661177.png)
当
时,
为
上的增函数;当
时,
为
上的减函数。(3)
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733520352.png)
(2)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733535534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027335511238.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027335661177.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733582523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733598495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733629544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733582523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733598495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733660525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733676631.png)
试题分析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027336911885.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733707390.png)
⑵设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733535534.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027337381230.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733738835.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733769936.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027335661177.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733785370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733800720.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733816727.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733598495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733629544.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733863359.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733863722.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733816727.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733598495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733629544.png)
综上可得,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733582523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733598495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733629544.png)
同理可证,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733582523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733598495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733660525.png)
⑶
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027340031769.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733504544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027340341671.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733504544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027340661234.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733504544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027340971831.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002733504544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002734144816.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002734159511.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002734175571.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002734190688.png)
点评:用定义法证明函数单调性的步骤:一设二作差三变形四判断符号五得出结论,其中最重要的是四变形,最好变成几个因式乘积的形式,这样便于判断符号。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目