题目内容
13.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠DAB=60°.侧面PAD为正三角形,且平面PAD⊥平面ABCD,则下列说法错误的是( )A. | 在棱AD上存在点M,使AD⊥平面PMB | B. | 异面直线AD与PB所成的角为90° | ||
C. | 二面角P-BC-A的大小为45° | D. | BD⊥平面PAC |
分析 根据线面垂直,异面直线所成角的大小以及二面角的求解方法分别进行判断即可.
解答 解:对于A,取AD的中点M,连PM,BM,则∵侧面PAD为正三角形,
∴PM⊥AD,
又底面ABCD是∠DAB=60°的菱形,
∴三角形ABD是等边三角形,
∴AD⊥BM,
∴AD⊥平面PBM,故A正确,
对于B,∵AD⊥平面PBM,
∴AD⊥PB,即异面直线AD与PB所成的角为90°,故B正确,
对于C,∵底面ABCD为菱形,∠DAB=60°平面PAD⊥平面ABCD,
∴BM⊥BC,则∠PBM是二面角P-BC-A的平面角,
设AB=1,则BM=$\frac{\sqrt{3}}{2}$,PM=$\frac{\sqrt{3}}{2}$,
在直角三角形PBM中,tan∠PBM=$\frac{PM}{BM}=1$,
即∠PBM=45°,故二面角P-BC-A的大小为45°,故C正确,
故错误的是D,
故选:D.
点评 本题主要考查空间直线和平面位置关系以及二面角的求解,根据相应的判断和证明方法是解决本题的关键.综合性较强,难度较大.
练习册系列答案
相关题目
6.x2>0是x>0的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也必要条件 |