题目内容
设数列的前n项和为
,数列
满足:
,且数列
的前
n项和为.
(1) 求的值;
(2) 求证:数列是等比数列;
(3) 抽去数列中的第1项,第4项,第7项,……,第3n-2项,……余下的项顺序不变,组成一个新数列
,若
的前n项和为
,求证:
.
【答案】
解:(1)由题意得: ;………………1分
当n=1时,则有: 解得:
;
当n=2时,则有: ,即
,解得:
;
………………2分
(2) 由 ① 得:
② ………………3分
② - ①得: ,
即:
即:
;
……………5分
,由
知:
数列是以4为首项,2为公比的等比数列.…………………………………8分
(3)由(2)知: ,即
……………………9分
当n≥2时, 对n=1也成立,
即(n
………………………………………………………….…10分
数列
为
,它的奇数项组成以4为首项、公比为8的等比数列;偶数项组成以8为首项、公比为8的等比数列;…………………11分
当n=2k-1
时,
…………………14分
当n=2k
时,
.……………………………………………………………16分
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目