题目内容
已知公差不为0的等差数列{an}的首项a1=a,a∈N*,设数列的前n项和为Sn,且
,
,
成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设An=
+
+
+…+
,若A2011=
,求a的值.
1 |
a1 |
1 |
a2 |
1 |
a4 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设An=
1 |
S1 |
1 |
S2 |
1 |
S3 |
1 |
Sn |
2011 |
2012 |
分析:(I)设等差数列{an}的公差为d,由
,
,
成等比数列可得 (
)2=
.
,化简可得d=a.所以an=na.
(II)求出Sn,可得
的解析式,用裂项法求得An=
+
+
+…+
=
(1-
),再由A2011=
求出a的值.
1 |
a1 |
1 |
a2 |
1 |
a4 |
1 |
a2 |
1 |
a1 |
1 |
a4 |
(II)求出Sn,可得
1 |
Sn |
1 |
S1 |
1 |
S2 |
1 |
S3 |
1 |
Sn |
2 |
a |
1 |
n+1 |
2011 |
2012 |
解答:解:(I)设等差数列{an}的公差为d,由
,
,
成等比数列可得 (
)2=
.
,化简得(a1+d)2=a1(a1+3d),
因为d≠0,所以d=a.所以an=na.------(6分)
(II)∵Sn=a+2a+3a+…+na=
,∴
=
(
-
),∴An=
+
+
+…+
=
(1-
),
∵A2011=
.
=
,
∴a=2.-----(12分)
1 |
a1 |
1 |
a2 |
1 |
a4 |
1 |
a2 |
1 |
a1 |
1 |
a4 |
因为d≠0,所以d=a.所以an=na.------(6分)
(II)∵Sn=a+2a+3a+…+na=
a•n•(n+1) |
2 |
1 |
Sn |
2 |
a |
1 |
n |
1 |
n+1 |
1 |
S1 |
1 |
S2 |
1 |
S3 |
1 |
Sn |
2 |
a |
1 |
n+1 |
∵A2011=
2 |
a |
2011 |
2012 |
2011 |
2012 |
∴a=2.-----(12分)
点评:本题主要考查等比数列的定义和性质,等差数列的通项公式,用裂项法对数列进行求和,属于中档题.
练习册系列答案
相关题目