题目内容
已知函数y=Asin(ωx+ϕ),x∈R(其中A>0,ω>0,0<φ<π)在一个周期内的图象如图,(1)求函数的解析式;
(2)当
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_ST/0.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_ST/images1.png)
【答案】分析:(1)由图可知A=2,由
T=
可求ω,由-
ω+φ=2kπ+
(k∈Z)及0<φ<π可求得φ;
(2)由x∈[-
,0]⇒2x+
∈[-
,
]⇒sin(2x+
)∈[-
,1],从而可求函数的最值.
解答:解:(1)由图知A=2,
∵
T=
-(-
)=
,故T=
=π,
∴ω=2,
∵函数y=2sin(2x+ϕ)经过点(-
,2),
∴-
×2+φ=2kπ+
(k∈Z),
∴φ=2kπ+
(k∈Z),
又0<φ<π,
∴φ=
.
∴y=2sin(2x+
);
(2)∵x∈[-
,0]
∴2x+
∈[-
,
],
∴-
≤sin(2x+
)≤1,
∴-
≤f(x)=2sin(2x+
)≤2,
∴当x∈[-
,0]时,f(x)max=2,f(x)min=-
.
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,考查正弦函数的单调性与值域,属于中档题.
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/0.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/1.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/2.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/3.png)
(2)由x∈[-
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/4.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/5.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/6.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/7.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/8.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/9.png)
解答:解:(1)由图知A=2,
∵
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/10.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/11.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/12.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/13.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/14.png)
∴ω=2,
∵函数y=2sin(2x+ϕ)经过点(-
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/15.png)
∴-
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/16.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/17.png)
∴φ=2kπ+
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/18.png)
又0<φ<π,
∴φ=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/19.png)
∴y=2sin(2x+
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/20.png)
(2)∵x∈[-
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/21.png)
∴2x+
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/22.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/23.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/24.png)
∴-
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/25.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/26.png)
∴-
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/27.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/28.png)
∴当x∈[-
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/29.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174608220201450/SYS201311031746082202014019_DA/30.png)
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,考查正弦函数的单调性与值域,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
已知函数y=Asin(ωx+φ),在同一周期内,当x=
时,取最大值y=2,当x=
时,取得最小值y=-2,那么函数的解析式为( )
π |
12 |
7π |
12 |
A、y=
| ||||
B、y=2sin(2x+
| ||||
C、y=2sin(
| ||||
D、y=2sin(2x+
|
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201105/19/7d3714d4.png)
A、y=2sin(
| ||||
B、y=2sin(3x+
| ||||
C、y=2sin(3x-
| ||||
D、y=2sin(3x-
|