题目内容

已知函数y=Asin(ωx+φ),在同一周期内,当x=
π
12
时,取最大值y=2,当x=
12
时,取得最小值y=-2,那么函数的解析式为(  )
A、y=
1
2
sin(x+
π
3
B、y=2sin(2x+
π
3
C、y=2sin(
x
2
-
π
6
D、y=2sin(2x+
π
6
分析:由题意求出A,当x=
π
12
时,取最大值y=2,当x=
12
时,取得最小值y=-2,得到ω,Φ的关系式,求解即可.
解答:解:函数y=Asin(ωx+φ),在同一周期内,当x=
π
12
时,取最大值y=2,当x=
12
时,取得最小值y=-2,
所以A=2,
ω
π
12
+Φ=
π
2
,ω
12
+Φ=
2

解得:ω=2
φ=
π
3

函数的解析式为:y=2sin(2x+
π
3

故选B
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,考查学生分析问题解决问题的能力,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网