题目内容
数列{an}中,an=
,Sn为{an}的前n项和,则S1+S2+…+S10的值为( )
1 |
n(n+1)(n+2) |
分析:利用“裂项求和”即可得出Sn,进而得到答案.
解答:解:∵an=
[(
-
)-(
-
)],
∴Sn=
[1-
-(
-
)]=
+
(
-
).
∴S1+S2+…+S10=
+
[(
-
)+(
-
)+(
-
)+…+(
-
)]
=
+
(
-
)
=
.
故选A.
1 |
2 |
1 |
n |
1 |
n+1 |
1 |
n+1 |
1 |
n+2 |
∴Sn=
1 |
2 |
1 |
n+1 |
1 |
2 |
1 |
n+2 |
1 |
4 |
1 |
2 |
1 |
n+2 |
1 |
n+1 |
∴S1+S2+…+S10=
10 |
4 |
1 |
2 |
1 |
3 |
1 |
2 |
1 |
4 |
1 |
3 |
1 |
5 |
1 |
4 |
1 |
12 |
1 |
11 |
=
5 |
2 |
1 |
2 |
1 |
12 |
1 |
2 |
=
55 |
24 |
故选A.
点评:熟练掌握“裂项求和”是解题的关键.
练习册系列答案
相关题目