题目内容

14.设数列{an}满足a1+2a2+22a3+…+2n-1an=$\frac{n}{2},n∈{N^*}$
(Ⅰ)求an
(Ⅱ)设bn=$\frac{1}{{1+{a_n}}}+\frac{1}{{1-{a_{n+1}}}}$,数列{bn}的前n项和为Tn.求证:Tn>2n-$\frac{1}{2}$.

分析 (I)利用递推关系即可得出;
(II)变形可得:bn=$2-(\frac{1}{{{2^n}+1}}-$$\frac{1}{{{2^{n+1}}-1}}$)$>2-(\frac{1}{2^n}-$$\frac{1}{{{2^{n+1}}}}$). 利用“裂项求和”及其“放缩法”即可得出.

解答 (I)解:当n=1时,${a_1}=\frac{1}{2}$.
当n≥2时,a1+2a2+22a3+…+2n-1an=$\frac{n}{2},n∈{N^*}$
${a_1}+2{a_2}+{2^2}{a_3}+…+{2^{n-2}}{a_{n-1}}=\frac{n-1}{2}$,
相减得${2^{n-1}}{a_n}=\frac{n}{2}-\frac{n-1}{2}=\frac{1}{2}$
∴当n≥2时,${a_n}=\frac{1}{2^n}$.
当n=1时,${a_1}=\frac{1}{2}$也满足上式,
所求通项公式${a_n}=\frac{1}{2^n}$.
(Ⅱ)证明:${b_n}=\frac{1}{{1+{{(\frac{1}{2})}^n}}}+\frac{1}{{1-{{(\frac{1}{2})}^{n+1}}}}=\frac{2^n}{{{2^n}+1}}+\frac{{{2^{n+1}}}}{{{2^{n+1}}-1}}$
=$\frac{{{2^n}+1-1}}{{{2^n}+1}}$+$\frac{{{2^{n+1}}-1+1}}{{{2^{n+1}}-1}}$=$1-\frac{1}{{{2^n}+1}}$+1+$\frac{1}{{{2^{n+1}}-1}}$=$2-(\frac{1}{{{2^n}+1}}-$$\frac{1}{{{2^{n+1}}-1}}$). 
由$\frac{1}{{{2^n}+1}}<\frac{1}{2^n}$,$\frac{1}{{{2^{n+1}}-1}}>\frac{1}{{{2^{n+1}}}}$,
得$\frac{1}{{{2^n}+1}}-$$\frac{1}{{{2^{n+1}}-1}}$$<\frac{1}{2^n}-$$\frac{1}{{{2^{n+1}}}}$.
∴bn=$2-(\frac{1}{{{2^n}+1}}-$$\frac{1}{{{2^{n+1}}-1}}$)$>2-(\frac{1}{2^n}-$$\frac{1}{{{2^{n+1}}}}$).  
从而${T_n}={b_1}+{b_2}+…+{b_n}>[2-(\frac{1}{2}-\frac{1}{2^2})]+[2-(\frac{1}{2^2}-\frac{1}{2^3})]+…+[2-(\frac{1}{2^n}-\frac{1}{{{2^{n+1}}}})]$=$2n-[(\frac{1}{2}-\frac{1}{2^2})+(\frac{1}{2^2}-\frac{1}{2^3})]+…+(\frac{1}{2^n}-\frac{1}{{{2^{n+1}}}})]$=$2n-(\frac{1}{2}-\frac{1}{{{2^{n+1}}}})>2n-\frac{1}{2}$,
即Tn>$2n-\frac{1}{2}$.

点评 本题考查了递推关系、“裂项求和”及其“放缩法”、不等式的性质,考查了变形能力、推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网