题目内容
14.设数列{an}满足a1+2a2+22a3+…+2n-1an=$\frac{n}{2},n∈{N^*}$(Ⅰ)求an;
(Ⅱ)设bn=$\frac{1}{{1+{a_n}}}+\frac{1}{{1-{a_{n+1}}}}$,数列{bn}的前n项和为Tn.求证:Tn>2n-$\frac{1}{2}$.
分析 (I)利用递推关系即可得出;
(II)变形可得:bn=$2-(\frac{1}{{{2^n}+1}}-$$\frac{1}{{{2^{n+1}}-1}}$)$>2-(\frac{1}{2^n}-$$\frac{1}{{{2^{n+1}}}}$). 利用“裂项求和”及其“放缩法”即可得出.
解答 (I)解:当n=1时,${a_1}=\frac{1}{2}$.
当n≥2时,a1+2a2+22a3+…+2n-1an=$\frac{n}{2},n∈{N^*}$
${a_1}+2{a_2}+{2^2}{a_3}+…+{2^{n-2}}{a_{n-1}}=\frac{n-1}{2}$,
相减得${2^{n-1}}{a_n}=\frac{n}{2}-\frac{n-1}{2}=\frac{1}{2}$
∴当n≥2时,${a_n}=\frac{1}{2^n}$.
当n=1时,${a_1}=\frac{1}{2}$也满足上式,
所求通项公式${a_n}=\frac{1}{2^n}$.
(Ⅱ)证明:${b_n}=\frac{1}{{1+{{(\frac{1}{2})}^n}}}+\frac{1}{{1-{{(\frac{1}{2})}^{n+1}}}}=\frac{2^n}{{{2^n}+1}}+\frac{{{2^{n+1}}}}{{{2^{n+1}}-1}}$
=$\frac{{{2^n}+1-1}}{{{2^n}+1}}$+$\frac{{{2^{n+1}}-1+1}}{{{2^{n+1}}-1}}$=$1-\frac{1}{{{2^n}+1}}$+1+$\frac{1}{{{2^{n+1}}-1}}$=$2-(\frac{1}{{{2^n}+1}}-$$\frac{1}{{{2^{n+1}}-1}}$).
由$\frac{1}{{{2^n}+1}}<\frac{1}{2^n}$,$\frac{1}{{{2^{n+1}}-1}}>\frac{1}{{{2^{n+1}}}}$,
得$\frac{1}{{{2^n}+1}}-$$\frac{1}{{{2^{n+1}}-1}}$$<\frac{1}{2^n}-$$\frac{1}{{{2^{n+1}}}}$.
∴bn=$2-(\frac{1}{{{2^n}+1}}-$$\frac{1}{{{2^{n+1}}-1}}$)$>2-(\frac{1}{2^n}-$$\frac{1}{{{2^{n+1}}}}$).
从而${T_n}={b_1}+{b_2}+…+{b_n}>[2-(\frac{1}{2}-\frac{1}{2^2})]+[2-(\frac{1}{2^2}-\frac{1}{2^3})]+…+[2-(\frac{1}{2^n}-\frac{1}{{{2^{n+1}}}})]$=$2n-[(\frac{1}{2}-\frac{1}{2^2})+(\frac{1}{2^2}-\frac{1}{2^3})]+…+(\frac{1}{2^n}-\frac{1}{{{2^{n+1}}}})]$=$2n-(\frac{1}{2}-\frac{1}{{{2^{n+1}}}})>2n-\frac{1}{2}$,
即Tn>$2n-\frac{1}{2}$.
点评 本题考查了递推关系、“裂项求和”及其“放缩法”、不等式的性质,考查了变形能力、推理能力与计算能力,属于中档题.
A. | (-2,2) | B. | (-∞,2) | C. | (-∞,-2)∪(2,+∞) | D. | (2,+∞) |
A. | ($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{b}$•$\overrightarrow{c}$) | B. | |$\overrightarrow{a}$-$\overrightarrow{b}$|2=|$\overrightarrow{a}$|2-2|$\overrightarrow{a}$||$\overrightarrow{b}$|+|$\overrightarrow{b}$|2 | ||
C. | 若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$+$\overrightarrow{b}$|,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60° | D. | 若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60° |
A. | 若a⊥α,a⊥β,则α∥β | B. | 若a⊥α,b⊥α,则a∥b | C. | 若a?α,b⊥α,则a⊥b | D. | 若a⊥α,α⊥β,则a∥β |