题目内容
函数f(x)=2x+x3-2在区间(0,1)内的零点个数是________.
1
【解析】因为函数f(x)=2x+x3-2的导数为f′(x)=2xln2+3x2≥0,所以函数f(x)单调递增,f(0)=1-2=-1<0,f(1)=2+1-2=1>0,所以根据根的存在定理可知在区间(0,1)内函数的零点个数为1个.
练习册系列答案
相关题目
若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,其参考数据如下:
f(1)=-2 | f(1.5)=0.625 | f(1.25)=-0.984 |
f(1.375)=-0.260 | f(1.4375)=0.162 | f(1.40625)=-0.054 |
那么方程x3+x2-2x-2=0的一个近似根为________(精确到0.1).