题目内容
(2007•崇文区二模)已知向量
=(2,2),
=(
cosa,
sina),则
向量的模的取值范围是( )
OC |
CA |
2 |
2 |
OA |
分析:
=
+
=(2+
cosα,2+
sinα),则|
|=
=
,根据sinx的有界性可求得模的范围.
OA |
OC |
CA |
2 |
2 |
OA |
(2+
|
10+8sin(α+
|
解答:解:
=
+
=(2+
cosα,2+
sinα),
|
|=
=
,
又-1≤sin(α+
)≤1,所以2≤10+8sin(α+
)≤18,
所以
≤|
|≤3
,
故选D.
OA |
OC |
CA |
2 |
2 |
|
OA |
(2+
|
10+8sin(α+
|
又-1≤sin(α+
π |
4 |
π |
4 |
所以
2 |
OA |
2 |
故选D.
点评:本题考查平面向量数量积的坐标运算、模,考查学生的运算能力.
练习册系列答案
相关题目