题目内容

精英家教网椭圆C1
x2
4
+
y2
3
=1
的左准线为l,左、右焦点分别为F1、F2,抛物线C2的准线为l,焦点为F2,C1与C2的一个交点为P,则|PF2|的值等于(  )
A、
2
3
B、
4
3
C、2
D、
8
3
分析:P到椭圆的左准线的距离设为d,先利用椭圆的第二定义求得PF1|=
1
2
d,利用抛物线的定义可知|PF2|=d,最后根据椭圆的定义可知
|PF2|+|PF1|=4求得d,则|PF2|可得.
解答:解:椭圆的离心率为
1
2
,P到椭圆的左准线的距离设为d,则|PF1|=
1
2
d,|PF2|+|PF1|=4,又|PF2|=d,
∴d=|PF2|=
8
3

故选D.
点评:本题主要考查了椭圆的简单性质.解题的关键是灵活利用椭圆和抛物线的定义.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网