题目内容
设第一象限内的点(x,y)满足约束条件 , 若目标函数z=ax+by(a>0,b>0)的最大值为40,则的最小值为( )
A. | B. | C.1 | D.4 |
B
因为不等式表示的平面区域阴影部分,
当直线ax+by=z(a>0,b>0)过直线x-y+2=0与直线2x-y-6=0的交点(8,10)时,
目标函数z=ax+by(a>0,b>0)取得最大40,
即8a+10b=40,即4a+5b=20,那么利用均值不等式可知函数的最值为,选B
当直线ax+by=z(a>0,b>0)过直线x-y+2=0与直线2x-y-6=0的交点(8,10)时,
目标函数z=ax+by(a>0,b>0)取得最大40,
即8a+10b=40,即4a+5b=20,那么利用均值不等式可知函数的最值为,选B
练习册系列答案
相关题目