题目内容

函数f(x)=
x
1-x
(0<x<1)的反函数为f-1(x),数列{an}和{bn}满足:a1=
1
2
,an+1=f-1(an),函数y=f-1(x),的图象在点(n,f-1(n))(n∈N*)处的切线在y轴上的截距为bn
(1)求数列{an}的通项公式;
(2)若数列{
bn
a
2
n
-
λ
an
}的项中仅
b5
a
2
5
-
λ
a5
最小,求λ的取值范围;
(3)令函数g(x)=[f-1(x)+f(x)]-
1-x2
1+x2
,0<x<1.数列{xn}满足:x1=
1
2
,0<xn<1且xn+1=g(xn)(其中n∈N*).证明:
(x2-x1)2
x1x2
+
(x3-x2)2
x2x3
+…+
(xn+1-xn)2
xnxn+1
5
16
分析:(1)令y=
x
1-x
,解得x=
y
1+y
;由0<x<1,解得y>0.所以函数f(x)的反函数f-1(x)=
x
1+x
(x>0)
.由an+1=f-1(an)=
an
1+an
,得
1
an+1
-
1
an
=1
由此能求出数列{an}的通项公式.
(2)由f-1(x)=
x
1+x
(x>0)
,知y=f-1(x)在点(n,f-1(n))处的切线方程为y-
n
n+1
=
1
(1+n)2
(x-n)
,令x=0得bn=
n2
(1+n)2
.由此能求出λ的取值范围.
(3)g(x)=[f-1(x)+f(x)]•
1-x2
1+x2
=[
x
1+x
+
x
1-x
]•
1-x2
1+x2
=
2x
1+x2
,x∈(0,1)
.所以xn+1-xn=xn(1-xn)•
1+xn
x
2
n
+1
,由0<xn<1,知xn+1>xn1>xn+1xn>…x2
1
2
.由此入手能够证明:
(x2-x1)2
x1x2
+
(x3-x2)2
x2x3
+…+
(xn+1-xn)2
xnxn+1
5
16
解答:解:(1)令y=
x
1-x
,解得x=
y
1+y
;由0<x<1,解得y>0.
∴函数f(x)的反函数f-1(x)=
x
1+x
(x>0)

an+1=f-1(an)=
an
1+an
,得
1
an+1
-
1
an
=1
.∴{
1
an
}
是以2为首项,1为公差的等差数列,故an=
1
n+1

(2)∵f-1(x)=
x
1+x
(x>0)
,∴[f-1(x)]=
1
(1+x)2
,∴y=f-1(x)在点(n,f-1(n))处的切线方程为y-
n
n+1
=
1
(1+n)2
(x-n)
,令x=0得bn=
n2
(1+n)2

bn
a
2
n
-
λ
an
=n2-λ(n+1)=(n-
λ
2
)2-λ-
λ2
4

∵仅当n=5时取得最小值,∴4.5<
λ
2
<5.5

∴λ的取值范围为(9,11).
(3)g(x)=[f-1(x)+f(x)]•
1-x2
1+x2
=[
x
1+x
+
x
1-x
]•
1-x2
1+x2
=
2x
1+x2
,x∈(0,1)

所以xn+1-xn=xn(1-xn)•
1+xn
x
2
n
+1
,又因0<xn<1,则xn+1>xn.显然1>xn+1xn>…x2
1
2
xn+1-xn=xn(1-xn)•
1+xn
x
2
n
+1
1
4
1
xn+1+
2
xn+1
-2
1
4
1
2
2
-2
=
2
+1
8

(xn+1-xn)2
xnxn+1
=
xn+1-xn
xnxn+1
(xn+1-xn)=(xn+1-xn)(
1
xn
-
1
xn+1
)<
2
+1
8
(
1
xn
-
1
xn+1
)

(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
+…+
(xn+1-xn)2
xnxn+1
2
+1
8
[(
1
x1
-
1
x2
)+(
1
x2
-
1
x3
)+…+(
1
xn
-
1
xn+1
)]
=
2
+1
8
(
1
x1
-
1
xn+1
)=
2
+1
8
(2-
1
xn+1
)
1
2
xn+1<1

1<
1
xn+1
<2
,∴0<2-
1
xn+1
<1
(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
+…+
(xn+1-xn)2
xnxn+1
=
2
+1
8
(2-
1
xn+1
)<
2
+1
8
3
2
+1
8
=
5
16
点评:本题考查数列和函数的综合运用,解题时要认真审题,注意导数的合理运用,恰当地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网