题目内容
函数f(x)=x |
1-x |
1 |
2 |
(1)求数列{an}的通项公式;
(2)若数列{
bn | ||
|
λ |
an |
b5 | ||
|
λ |
a5 |
(3)令函数g(x)=[f-1(x)+f(x)]-
1-x2 |
1+x2 |
1 |
2 |
(x2-x1)2 |
x1x2 |
(x3-x2)2 |
x2x3 |
(xn+1-xn)2 |
xnxn+1 |
5 |
16 |
分析:(1)令y=
,解得x=
;由0<x<1,解得y>0.所以函数f(x)的反函数f-1(x)=
(x>0).由an+1=f-1(an)=
,得
-
=1由此能求出数列{an}的通项公式.
(2)由f-1(x)=
(x>0),知y=f-1(x)在点(n,f-1(n))处的切线方程为y-
=
(x-n),令x=0得bn=
.由此能求出λ的取值范围.
(3)g(x)=[f-1(x)+f(x)]•
=[
+
]•
=
,x∈(0,1).所以xn+1-xn=xn(1-xn)•
,由0<xn<1,知xn+1>xn.1>xn+1>xn>…x2>
.由此入手能够证明:
+
+…+
<
.
x |
1-x |
y |
1+y |
x |
1+x |
an |
1+an |
1 |
an+1 |
1 |
an |
(2)由f-1(x)=
x |
1+x |
n |
n+1 |
1 |
(1+n)2 |
n2 |
(1+n)2 |
(3)g(x)=[f-1(x)+f(x)]•
1-x2 |
1+x2 |
x |
1+x |
x |
1-x |
1-x2 |
1+x2 |
2x |
1+x2 |
1+xn | ||
|
1 |
2 |
(x2-x1)2 |
x1x2 |
(x3-x2)2 |
x2x3 |
(xn+1-xn)2 |
xnxn+1 |
5 |
16 |
解答:解:(1)令y=
,解得x=
;由0<x<1,解得y>0.
∴函数f(x)的反函数f-1(x)=
(x>0).
则an+1=f-1(an)=
,得
-
=1.∴{
}是以2为首项,1为公差的等差数列,故an=
.
(2)∵f-1(x)=
(x>0),∴[f-1(x)]′=
,∴y=f-1(x)在点(n,f-1(n))处的切线方程为y-
=
(x-n),令x=0得bn=
.
∴
-
=n2-λ(n+1)=(n-
)2-λ-
.
∵仅当n=5时取得最小值,∴4.5<
<5.5.
∴λ的取值范围为(9,11).
(3)g(x)=[f-1(x)+f(x)]•
=[
+
]•
=
,x∈(0,1).
所以xn+1-xn=xn(1-xn)•
,又因0<xn<1,则xn+1>xn.显然1>xn+1>xn>…x2>
.xn+1-xn=xn(1-xn)•
≤
•
<
•
=
∴
=
(xn+1-xn)=(xn+1-xn)(
-
)<
(
-
)
∴
+
+…+
<
[(
-
)+(
-
)+…+(
-
)]=
(
-
)=
(2-
)∵
<xn+1<1,
∴1<
<2,∴0<2-
<1∴
+
+…+
=
(2-
)<
<
=
.
x |
1-x |
y |
1+y |
∴函数f(x)的反函数f-1(x)=
x |
1+x |
则an+1=f-1(an)=
an |
1+an |
1 |
an+1 |
1 |
an |
1 |
an |
1 |
n+1 |
(2)∵f-1(x)=
x |
1+x |
1 |
(1+x)2 |
n |
n+1 |
1 |
(1+n)2 |
n2 |
(1+n)2 |
∴
bn | ||
|
λ |
an |
λ |
2 |
λ2 |
4 |
∵仅当n=5时取得最小值,∴4.5<
λ |
2 |
∴λ的取值范围为(9,11).
(3)g(x)=[f-1(x)+f(x)]•
1-x2 |
1+x2 |
x |
1+x |
x |
1-x |
1-x2 |
1+x2 |
2x |
1+x2 |
所以xn+1-xn=xn(1-xn)•
1+xn | ||
|
1 |
2 |
1+xn | ||
|
1 |
4 |
1 | ||
xn+1+
|
1 |
4 |
1 | ||
2
|
| ||
8 |
∴
(xn+1-xn)2 |
xnxn+1 |
xn+1-xn |
xnxn+1 |
1 |
xn |
1 |
xn+1 |
| ||
8 |
1 |
xn |
1 |
xn+1 |
∴
(x1-x2)2 |
x1x2 |
(x2-x3)2 |
x2x3 |
(xn+1-xn)2 |
xnxn+1 |
| ||
8 |
1 |
x1 |
1 |
x2 |
1 |
x2 |
1 |
x3 |
1 |
xn |
1 |
xn+1 |
| ||
8 |
1 |
x1 |
1 |
xn+1 |
| ||
8 |
1 |
xn+1 |
1 |
2 |
∴1<
1 |
xn+1 |
1 |
xn+1 |
(x1-x2)2 |
x1x2 |
(x2-x3)2 |
x2x3 |
(xn+1-xn)2 |
xnxn+1 |
| ||
8 |
1 |
xn+1 |
| ||
8 |
| ||
8 |
5 |
16 |
点评:本题考查数列和函数的综合运用,解题时要认真审题,注意导数的合理运用,恰当地进行等价转化.
练习册系列答案
相关题目