题目内容

已知函数f(x)=ax2+x-xlnx(a>0).
(1)若函数满足f(1)=2,且在定义域内f(x)≥bx2+2x恒成立,求实数b的取值范围;
(2)若函数f(x)在定义域上是单调函数,求实数a的取值范围.
分析:(1)由已知,求得f(x)=x2+x-xlnx.将不等式f(x)≥bx2+2x转化为1-
1
x
-
lnx
x
≥b.构造函数g(x)=1-
1
x
-
lnx
x
,只需b≤g(x)min即可.因此又需求g(x)min.
(2)函数f(x)在定义域上是单调函数,需f′(x)在定义域上恒非负或恒非正.考查f′(x)的取值情况,进行解答.
解答:解:(1)∵f(1)=2,∴a=1,f(x)=x2+x-xlnx.由f(x)≥bx2+2x?1-
1
x
-
lnx
x
≥b.
令g(x)=1-
1
x
-
lnx
x
,可得g(x)在(0,1]上单调递减,在[1,+∞)上单调递增,所以g(x)min=g(1)=0,即b≤0.
(2)f′(x)=2ax-lnx(x>0).令f′(x)>0,得2a≥
lnx
x

   令h(x)=
lnx
x
,当x=e时,h(x)max=
1
e

∴当a≥
1
2e
时,f′(x)>0(x>0)恒成立,此时.函数f(x)在定义域上单调递增.
 若0<a<
1
2e
,g(x)=2ax-lnx,(x>0),g′(x)=2a-
1
x

由g′(x)=0,得出x=
1
2a
x∈(0,
1
2a
)
,g′(x)<0,x∈(
1
2a
,+∞)
,g′(x)>0,∴x=
1
2a
时,g(x)取得极小值也是最小值.而当0<a<
1
2e
时,g(
1
2a
)=1-ln
1
2a
<0,f′(x)=0必有根.f(x)必有极值,在定义域上不单调.
综上所述,a≥
1
2e
点评:此题考查函数单调性与导数故选的应用,考查学生会利用导函数的正负确定函数的单调区间,掌握函数恒成立时所取的条件,是一道综合题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网