题目内容
8.已知$1≤lg\frac{x}{y}≤2,2≤lg\frac{x^3}{{\sqrt{y}}}≤3$,求$lg\frac{x^3}{{\root{3}{y}}}$的取值范围.分析 由已知可得$\left\{\begin{array}{l}{1≤lgx-lgy≤2}\\{2≤3lgx-\frac{1}{2}lgy≤3}\end{array}\right.$,令$\left\{{\begin{array}{l}{a=lgx-lgy}\\{b=3lgx-\frac{1}{2}lgy}\end{array}}\right.$,解得,$\left\{{\begin{array}{l}{lgx=\frac{2b-a}{5}}\\{lgy=\frac{2b-6a}{5}}\end{array}}\right.$,可得:$lg\frac{x^3}{{\root{3}{y}}}$=$\frac{16}{15}b-\frac{a}{5}$,即可得出.
解答 解:由已知可得$\left\{\begin{array}{l}{1≤lgx-lgy≤2}\\{2≤3lgx-\frac{1}{2}lgy≤3}\end{array}\right.$,(*)
令$\left\{{\begin{array}{l}{a=lgx-lgy}\\{b=3lgx-\frac{1}{2}lgy}\end{array}}\right.$,
解得,$\left\{{\begin{array}{l}{lgx=\frac{2b-a}{5}}\\{lgy=\frac{2b-6a}{5}}\end{array}}\right.$
因此可得:$lg\frac{x^3}{{\root{3}{y}}}=3lgx-\frac{1}{3}lgy=3×\frac{2b-a}{5}-\frac{1}{3}×\frac{2b-6a}{5}=\frac{16}{15}b-\frac{a}{5}$
由(*)可知:1≤a≤2,2≤b≤3,
由此可得$\frac{26}{15}≤\frac{16}{15}b-\frac{1}{5}a≤3$,
即$lg\frac{x^3}{{\root{3}{y}}}$的取值范围是$[{\frac{26}{15},3}]$.
点评 本题考查了对数的运算性质、“换元法”、不等式的性质,考查了推理能力与计算能力,属于中档题.
A. | (0,$\frac{π}{6}$) | B. | ($\frac{π}{6}$,$\frac{π}{4}$) | C. | ($\frac{π}{4}$,$\frac{π}{3}$) | D. | ($\frac{π}{3}$,$\frac{π}{2}$) |
A. | π | B. | 2π | C. | 3π | D. | $\frac{π}{2}$ |
A. | [0,+∞) | B. | [0,1) | C. | (-∞,1) | D. | (-1,1) |