ÌâÄ¿ÄÚÈÝ

11£®ÒÑÖªÕýÏîÊýÁÐ{an}Ç°nÏîºÍΪSn£¬ÇÒ¶ÔÈÎÒâµÄn¡ÊN£¬Sn=$\sqrt{{{a}_{1}}^{3}+{{a}_{2}}^{3}+¡­+{{a}_{n}}^{3}}$£®
£¨1£©Çóa1£¬a2£¬a3 µÄÖµ£®
£¨2£©²ÂÏëÊýÁÐ{an}µÄͨÏʽ²¢ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£»
£¨3£©Éèbn=$\frac{2n+1}{{a}_{n}^{2}•{a}_{n+1}^{2}}$£¬ÊýÁÐ{bn}Ç°nÏîºÍTn£®

·ÖÎö £¨1£©ÓÉÓÚ¶ÔÈÎÒâµÄn¡ÊN£¬Sn=$\sqrt{{{a}_{1}}^{3}+{{a}_{2}}^{3}+¡­+{{a}_{n}}^{3}}$£®¿ÉµÃ${S}_{n}^{2}$=${a}_{1}^{3}+{a}_{2}^{3}+¡­+{a}_{n}^{3}$£®·Ö±ðÁîn=1£¬2£¬3£¬ÁªÁ¢½â³ö¼´¿É£®
£¨2£©ÓÉ£¨1£©²ÂÏëan=n£®ÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷¼´¿É£®
£¨3£©bn=$\frac{2n+1}{{n}^{2}•£¨n+1£©^{2}}$=$\frac{1}{{n}^{2}}-\frac{1}{£¨n+1£©^{2}}$£¬ÀûÓá°ÁÑÏîÇóºÍ¡±¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©¡ß¶ÔÈÎÒâµÄn¡ÊN£¬Sn=$\sqrt{{{a}_{1}}^{3}+{{a}_{2}}^{3}+¡­+{{a}_{n}}^{3}}$£®¡à${S}_{n}^{2}$=${a}_{1}^{3}+{a}_{2}^{3}+¡­+{a}_{n}^{3}$£®

¡à·Ö±ðÁîn=1£¬2£¬3£¬¿ÉµÃ£º$\left\{\begin{array}{l}{{a}_{1}^{2}={a}_{1}^{3}}\\{£¨{a}_{1}+{a}_{2}£©^{2}={a}_{1}^{3}+{a}_{2}^{3}}\\{£¨{a}_{1}+{a}_{2}+{a}_{3}£©^{2}={a}_{1}^{3}+{a}_{2}^{3}+{a}_{3}^{3}}\end{array}\right.$£¬an£¾0£¬£¨?n¡ÊN*£©½âµÃa1=1£¬a2=2£¬a3=3£®
£¨2£©ÓÉ£¨1£©²ÂÏëan=n£®
ÏÂÃæÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º
£¨i£©µ±n=1ʱ£¬a1=1³ÉÁ¢£»
£¨ii£©¼ÙÉèµ±n=kʱ£¬ak=k£¨k¡ÊN*£©³ÉÁ¢£¬Sk=$\frac{k£¨k+1£©}{2}$£®
Ôòµ±n=k+1ʱ£¬¡ß${S}_{k+1}^{2}$=${a}_{1}^{3}$+${a}_{2}^{3}$+¡­+${a}_{k}^{3}$+${a}_{k+1}^{3}$=${S}_{k}^{2}$+${a}_{k+1}^{3}$£®
¡à$£¨{S}_{k}+{a}_{k+1}£©^{2}$=${S}_{k}^{2}$+${a}_{k+1}^{3}$£®
»¯Îª2¡Á$\frac{k£¨k+1£©}{2}$ak+1+${a}_{k+1}^{2}$=${a}_{k+1}^{3}$£¾0£®
¡à${a}_{k+1}^{2}$-ak+1-k£¨k+1£©=0£¬
½âµÃak+1=k+1£®
¡àµ±n=k+1ʱ£¬ak+1=k+1£¬½áÂÛ³ÉÁ¢£®
×ÛÉϿɵãº?n¡ÊN*£¬ak=k³ÉÁ¢£®
£¨3£©bn=$\frac{2n+1}{{a}_{n}^{2}•{a}_{n+1}^{2}}$=$\frac{2n+1}{{n}^{2}•£¨n+1£©^{2}}$=$\frac{1}{{n}^{2}}-\frac{1}{£¨n+1£©^{2}}$£¬
¡àÊýÁÐ{bn}Ç°nÏîºÍTn=$£¨\frac{1}{{1}^{2}}-\frac{1}{{2}^{2}}£©$+$£¨\frac{1}{{2}^{2}}-\frac{1}{{3}^{2}}£©$+¡­+$[\frac{1}{{n}^{2}}-\frac{1}{£¨n+1£©^{2}}]$
=1-$\frac{1}{£¨n+1£©^{2}}$
=$\frac{{n}^{2}+2n}{£¨n+1£©^{2}}$£®

µãÆÀ ±¾Ì⿼²éÁ˵ÝÍÆʽµÄÓ¦ÓᢵȲîÊýÁеÄͨÏʽ¼°Ç°nÏîºÍ¹«Ê½¡¢Êýѧ¹éÄÉ·¨¡¢¡°ÁÑÏîÇóºÍ¡±£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø