题目内容
已知ab≠0,求证:a+b=1的充要条件是a3+b3+ab-a2-b2=0.
思路解析:a+b=1的充分条件是a3+b3+ab-a2-b2=0,需证“a3+b3+ab-a2-b2=0 证明:(必要性)∵ a+b=1,即a+b-1=0, ∴ a3+b3+ab-a2-b2=(a+b)(a2-ab+b2)-(a2+b2-ab)=(a+b-1)(a2-ab+b2)=0. (充分性)∵ a3+b3+ab-a2-b2=0,即(a+b-1)(a2-ab+b2)=0, 而ab≠0, ∴ a≠0且b≠0. 而a2-ab+b2=(a- 综上,可知当ab≠0时,a+b=1的充要条件是a3+b3+ab-a2-b2=0. 误区警示 这种题在进行证明时有时误将充分性当必要性,又将必要性当充分性来证,故首先要分清条件与结论是什么. 另外,该例的叙述格式是B成立的充要条件是A,因此由Aa+b=1”.反之,是必要性.
)2+
b2>0,∴ a+b-1=0,即a+b=1.
B是充分性,由B
A是必要性.若叙述格式是p是q的充要条件,则由p
q是充分性,由q
p是必要性.
优佳学案暑假活动系列答案
赢在课堂激活思维系列答案
金考卷单元专项期中期末系列答案
步步高大一轮复习讲义系列答案
毕业生暑期必读系列答案
名师金手指暑假生活系列答案
暑假乐园星球地图出版社系列答案
名校秘题全程导练系列答案
千里马走向假期期末仿真试卷寒假系列答案
新锐图书假期园地暑假作业中原农民出版社系列答案