题目内容

05年全国卷Ⅰ)(14分)

已知椭圆的中心为坐标原点O,焦点在轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,共线。

(Ⅰ)求椭圆的离心率;

(Ⅱ)设M为椭圆上任意一点,且,证明为定值。

解析:(1)解:设椭圆方程为

则直线AB的方程为,代入,化简得

.

令A(),B),则

共线,得

,所以

故离心率

(II)证明:(1)知,所以椭圆可化为

,由已知得

 在椭圆上,

由(1)知

,代入①得

为定值,定值为1.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网