题目内容

(2013•乐山一模)已知某几何体的直观图和三视图如图所示,其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.
(Ⅰ)证明:BN⊥平面C1NB1
(Ⅱ)求平面CNB1与平面C1NB1所成角的余弦值;
分析:(Ⅰ)根据题意,可得BA,BC,BB1两两垂直,以BA,BB1,BC分别为x,y,z轴建立空间直角坐标系,用坐标表示点、向量,利用数量积证明NB⊥NB1,BN⊥B1C1,即可证明BN⊥平面C1NB1
(Ⅱ)
BN
是平面C1B1N的一个法向量
n1
=(4,4,0)
,求出平面NCB1的一个法向量
n2
=(1,1,2)
,利用向量的数量积,可求
二面角C-NB1-C1的余弦值.
解答:(Ⅰ)证明:∵该几何体的正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形,
∴BA,BC,BB1两两垂直.
以BA,BB1,BC分别为x,y,z轴建立空间直角坐标系如图.--------------(2分)

则B(0,0,0),N(4,4,0),B1(0,8,0),C1(0,8,4),C(0,0,4).
BN
NB1
=(4,4,0)•(-4,4,0)=-16+16=0
BN
B1C1
=(4,4,0)•(0,0,4)=0
.------------(4分)
∴NB⊥NB1,BN⊥B1C1
又NB1与B1C1相交于B1,∴BN⊥平面C1NB1.-------------------(6分)
(Ⅱ)解:∵BN⊥平面C1NB1,∴
BN
是平面C1B1N的一个法向量
n1
=(4,4,0)
,------------(8分)
n2
=(x,y,z)
为平面NCB1的一个法向量,则
n2
CN
=0
n2
NB1
=0
,∴
x+y-z=0
x-y=0

所以可取
n2
=(1,1,2)
.------------(10分)
则cos
n1
n2
=
n1
n2
|
n1
||
n2
|
=
3
3

∴所求二面角C-NB1-C1的余弦值为
3
3
.------------(12分)
点评:本题考查线面垂直,考查面面角,解题的关键是构建空间直角坐标系,确定平面的法向量.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网