题目内容

2.已知椭圆:$\frac{x^2}{9}+\frac{y^2}{4}=1$,左右焦点分别为F1,F2,过F1的直线l交椭圆于A,B 两点,则|$\overrightarrow{B{F}_{2}}$|+|$\overrightarrow{A{F}_{2}}$|的最大值为$\frac{28}{3}$.

分析 由椭圆方程求得椭圆的半焦距,结合椭圆定义求得|AF2|+|BF2|+|AB|=4a=12,再求出当AB垂直于x轴时的最小值,则|AF2|+|BF2|的最大值可求.

解答 解:由椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$,得a=3,b=2,c=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{5}$,
由椭圆的定义可得:|AF2|+|BF2|+|AB|=4a=12,
∵当且仅当AB⊥x轴时,|AB|取得最小值,
把x=-$\sqrt{5}$代入$\frac{x^2}{9}+\frac{y^2}{4}=1$,解得:y=±$\frac{4}{3}$,
∴|AB|min=$\frac{8}{3}$,
∴|AF2|+|BF2|的最大值为12-$\frac{8}{3}$=$\frac{28}{3}$.
故答案为:$\frac{28}{3}$.

点评 本题考查了椭圆的定义,考查了椭圆的简单几何性质,关键是明确当AB垂直于x轴时焦点弦最短,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网