题目内容
8.如图,△ABC为等腰直角三角形,∠ACB=90°,PA⊥面ABC,AC=a,PA=$\sqrt{2}$a.(1)求证:PC⊥BC;
(2)求二面角A-PB-C的余弦值的大小.
分析 (1)由直角三角形性质得BC⊥AC,线面垂直得BC⊥PA,由此能证明PC⊥BC.
(2)以C为原点,CA为x轴,CB为y轴,过C点作AP的平行线为z轴,建立空间直角坐标系,求出平面PAB的法向量和平面PBC的法向量,由此利用向量法能求出二面角A-PB-C的余弦值的大小.
解答 (1)证明:∵△ABC为等腰直角三角形,∠ACB=90°,∴BC⊥AC,
∵PA⊥面ABC,BC?平面ABC,∴BC⊥PA,
∵PA∩AC=A,∴BC⊥平面PAC,
∵PC?平面PAC,∴PC⊥BC.
(2)解:以C为原点,CA为x轴,CB为y轴,过C点作AP的平行线为z轴,建立空间直角坐标系,
则由已知得A(a,0,0),B(0,a,0),C(0,0,0),P(a,0,$\sqrt{2}$a),
$\overrightarrow{PA}$=(0,0,-$\sqrt{2}a$),$\overrightarrow{PB}$=(-a,a,-$\sqrt{2}a$),$\overrightarrow{PC}$=(-a,0,-$\sqrt{2}a$),
设平面PAB的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PA}=-\sqrt{2}az=0}\\{\overrightarrow{n}•\overrightarrow{PB}=-ax+ay-\sqrt{2}az=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,1,0),
设平面PBC的法向量$\overrightarrow{m}$=(x1,y1,z1),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{PB}=-a{x}_{1}+a{y}_{1}-\sqrt{2}az=0}\\{\overrightarrow{m}•\overrightarrow{PC}=-a{x}_{1}-\sqrt{2}a{z}_{1}=0}\end{array}\right.$,取${x}_{1}=\sqrt{2}$,得$\overrightarrow{m}$=($\sqrt{2}$,0,-1),
设二面角A-PB-C的平面角为θ,
则cosθ=|cos<$\overrightarrow{m},\overrightarrow{n}$>|=|$\frac{\overrightarrow{n}•\overrightarrow{m}}{|\overrightarrow{n}|•|\overrightarrow{m}|}$|=|$\frac{\sqrt{2}}{\sqrt{2}•\sqrt{3}}$|=$\frac{\sqrt{3}}{3}$.
∴二面角A-PB-C的余弦值的大小为$\frac{\sqrt{3}}{3}$.
点评 本题考查线线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要注意向量法的合理运用.
A. | (0,+∞) | B. | (-∞,0) | C. | (3,+∞) | D. | (-∞,-3) |