题目内容

(2013•眉山二模)已知函数g(x)=ax3+bx2+cx+d(a≠0)的导函数为f(x),a+b+c=0,且f(0)•f(1)>0,设x1,x2是方程f(x)=0的两个根,则|x1-x2|的取值范围为(  )
分析:由题意得:f(x)=3ax2+2bx+c,x1,x2是方程f(x)=0的两个根,由韦达定理得,x1+x2=-
2b
3a
,x1x2=
c
3a
,于是求|x1-x2|2
=
4b2-12ac
9a2
,又a+b+c=0,从而有|x1-x2|2=
4
9
(
b
a
)
2
+
4
3
b
a
)+
4
3
①,又f(0)•f(1)>0,可求得-2<
b
a
<-1,代入①即可求得|x1-x2|2的范围,从而得到选项.
解答:解:由题意得:f(x)=3ax2+2bx+c,
∵x1,x2是方程f(x)=0的两个根,故x1+x2=-
2b
3a
,x1x2=
c
3a

|x1-x2|2=(x1+x22-4x1•x2=
4b2-12ac
9a2

又a+b+c=0,
∴c=-a-b代入上式,
|x1-x2|2=
4b2+12a(a+b)
9a2
=
12a2+4b2+12ab
9a2
=
4
9
(
b
a
)
2
+
4
3
b
a
)+
4
3
①,
又∵f(0)•f(1)>0,
∴(a+b)(2a+b)<0,即2a2+3ab+b2<0,
∵a≠0,两边同除以a2得:
(
b
a
)
2
+3
b
a
+2<0;
∴-2<
b
a
<-1,代入①得|x1-x2|2∈[
1
3
4
9

∴|x1-x2|∈[
3
3
2
3
).
故选A.
点评:本题考查根与系数的关系,着重考查韦达定理的使用,难点在于对条件“f(0)•f(1)>0”的挖掘,充分考察数学思维的深刻性与灵活性,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网