题目内容
【题目】已知两定点和,若对于实数,函数()的图像上有且仅有6个不同的点,使得成立,则的取值范围是________
【答案】
【解析】
画出函数y=|x+2|+|x﹣2|﹣4在[﹣4,4]的图象,讨论若P在AB上,设P(x,﹣2x﹣4);若P在BC上,设P(x,0);若P在CD上,设P(x,2x﹣4).求得向量PE,PF的坐标,求得数量积,由二次函数的最值的求法,求得取值范围,讨论交点个数,即可得到所求范围.
解:函数y=|x+2|+|x﹣2|﹣4
,
(1)若P在AB上,设P(x,﹣2x﹣4),﹣4≤x≤﹣2.
∴(3﹣x,6+2x),(﹣3﹣x,6+2x).
∴x2﹣9+(6+2x)2=5x2+24x+27,
∵x∈[﹣4,﹣2],∴由二次函数的性质可得:当时有两解;
(2)若P在BC上,设P(x,0),﹣2<x≤2.
∴(3﹣x,2),(﹣3﹣x,2).
∴x2﹣9+4=x2﹣5,
∵﹣2<x≤2,∴﹣5≤λ≤﹣1.
∴当λ=﹣5或﹣1时有一解,当﹣5<λ<﹣1时有两解;
(3)若P在CD上,设P(x,2x﹣4),2<x≤4.
(3﹣x,6﹣2x),(﹣3﹣x,6﹣2x),
∴x2﹣9+(6﹣2x)2=5x2﹣24x+27,
∵2<x≤4,
∴∴由二次函数的性质可得:当时有两解;
综上,可得有且只有6个不同的点P的情况是.
故答案为:.
【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”, 《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员“礼让斑马线”行为统计数据:
月份 | 1 | 2 | 3 | 4 | 5 |
违章驾驶员人数 | 120 | 105 | 100 | 90 | 85 |
(1)请利用所给数据求违章人数与月份之间的回归直线方程;
(2)预测该路口9月份的不“礼让斑马线”违章驾驶员人数.
参考公式: , .
参考数据: .
【题目】某地区不同身高的未成年男孩的体重平均值如下表:
身高 | 60 | 70 | 80 | 90 | 100 |
体重 | 6.13 | 7.90 | 9.99 | 12.15 | 15.02 |
已知与之间存在很强的线性相关性,
(1)据此建立与之间的回归方程;
(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高体重为的在校男生的体重是否正常?
参考数据:,,
附:对于一组数据,,…,,其回归直线中的斜率和截距的最小二乘估计分别为,.