题目内容

已知函数f(x)=x2-(2a+1)x+alnx.
(1)当a=1时,求函数f(x)的单调增区间;
(2)求函数f(x)在区间[1,e]上的最小值;
(1)(0,),(1,+∞)  (2)a(lna-a-1)
本试题主要考查了导数在研究函数中的运用。
解:(1)当a=1时,f(x)=x2-3x+lnx,定义域为(0,+∞),
f′(x)=2x-3+.
令f′(x)=0,得x=1或x=.
x
(0,)

(,1)
1
(1,+∞)
f′(x)

0

0

f(x)
?
极大值
?
极小值
?
所以函数f(x)的单调增区间为(0,),(1,+∞).
(2)f′(x)=2x-(2a+1)+,令f′(x)=0,得x=a或x=.
当a≤时,f(x)在[,+∞)上单调增,所以f(x)在区间[1,e]上单调增;
<a≤1时,f(x)在(0,],[a,+∞)上单调增,所以f(x)在区间[1,e]上单调增.
综上,当a≤1时,f(x)min=f(1)=-2a;
当1<a<e时,
x
(1,a)
a
(a,e)
f′(x)

0

f(x)
?
a(lna-a-1)
?
所以f(x)min=f(
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网