题目内容
(2013•福建)设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(i)T={f(x)|x∈S};(ii)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2),那么称这两个集合“保序同构”,以下集合对不是“保序同构”的是( )
分析:利用题目给出的“保序同构”的概念,对每一个选项中给出的两个集合,利用所学知识,找出能够使两个集合满足题目所给出的条件的函数,即B是函数的值域,且函数为定义域上的增函数.排除掉是“保序同构”的,即可得到要选择的答案.
解答:解:对于A=N*,B=N,存在函数f(x)=x-1,x∈N*,满足:(i)B={f(x)|x∈A};(ii)对任意x1,x2∈A,当x1<x2时,恒有f(x1)<f(x2),所以选项A是“保序同构”;
对于A={x|-1≤x≤3},B={x|x=-8或0<x≤10},存在函数f(x)=
,满足:
(i)B={f(x)|x∈A};(ii)对任意x1,x2∈A,当x1<x2时,恒有f(x1)<f(x2),所以选项B是“保序同构”;
对于A={x|0<x<1},B=R,存在函数f(x)=log
,0<x<1,满足:(i)B={f(x)|x∈A};(ii)对任意
x1,x2∈A,当x1<x2时,恒有f(x1)<f(x2),所以选项A是“保序同构”;
前三个选项中的集合对是“保序同构”,由排除法可知,不是“保序同构”的只有D.
故选D.
对于A={x|-1≤x≤3},B={x|x=-8或0<x≤10},存在函数f(x)=
|
(i)B={f(x)|x∈A};(ii)对任意x1,x2∈A,当x1<x2时,恒有f(x1)<f(x2),所以选项B是“保序同构”;
对于A={x|0<x<1},B=R,存在函数f(x)=log
1 |
2 |
1-x |
1+x |
x1,x2∈A,当x1<x2时,恒有f(x1)<f(x2),所以选项A是“保序同构”;
前三个选项中的集合对是“保序同构”,由排除法可知,不是“保序同构”的只有D.
故选D.
点评:本题是新定义题,考查了函数的定义域和值域,考查了函数的单调性,综合考查了不同类型函数的基本性质,是基础题.
练习册系列答案
相关题目