题目内容

已知圆锥曲线C:  为参数)和定点,是此圆锥曲线的左、右焦点。

(1)以原点O为极点,以x轴的正半轴为极轴建立极坐标系,求直线的极坐标方程;

(2)经过点,且与直线垂直的直线交此圆锥曲线于两点,求的值.

 

【答案】

(1)  (2)

【解析】

试题分析:(1)C:,轨迹为椭圆,其焦点,

,,

,即

(2)由(1)

,的斜率为,倾斜角为300

所以的参数方程为(t为参数),

代入椭圆C的方程中,得:

因为的异侧,

所以.

考点:本小题主要考查极坐标方程与参数方程的相关知识,考查转化推理能力.

点评:对于极坐标,要抓住极坐标与直角坐标互化公式这个关键点并灵活应用;对于参数方程,要紧紧抓住直线的参数方程、圆的参数方程、圆锥曲线的参数方程的建立以及各参数方程中参数的几何意义,同时要熟练掌握参数方程和普通方程互化的一些方法.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网