题目内容
(本小题12分) 已知曲线的极坐标方程为,曲线的方程是, 直线的参数方程是: .
(1)求曲线的直角坐标方程,直线的普通方程;
(2)求曲线上的点到直线距离的最小值.
解: (1) ;(2)到直线距离的最小值为。
解析试题分析:(Ⅰ)利用直角坐标与极坐标间的关系:ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得C的直角坐标方程,将直线l的参数消去得出直线l的普通方程.
(Ⅱ)曲线C1的方程为4x2+y2=4,设曲线C1上的任意点(cosθ,2sinθ),利用点到直线距离公式,建立关于θ的三角函数式求解.
解: (1) 曲线的方程为,直线的方程是:
(2)设曲线上的任意点,
该点到直线距离.
到直线距离的最小值为。
考点:本题主要考查了曲线参数方程求解、应用.考查函数思想,三角函数的性质.属于中档题.
点评:解决该试题的关键是对于椭圆上点到直线距离的最值问题,一般用参数方程来求解得到。
练习册系列答案
相关题目
已知某企业上半年前5个月产品广告投入与利润额统计如下:
月份 | 1 | 2 | 3 | 4 | 5 |
广告投入(x万元) | 9.5 | 9.3 | 9.1 | 8.9 | 9.7 |
利润(y万元) | 92 | 89 | 89 | 87 | 93 |
由此所得回归方程为,若6月份广告投入10(万元)估计所获利润为( )
A.95.25万元 B.96.5万元 C.97万元 D.97.25万元
PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,一般情况下PM2.5的浓度越大,大气环境质量越差.右边的茎叶图表示的是成都市区甲乙两个监测站某10日内每天的PM2.5浓度读数(单位:),则下列说法正确的是( )
A.这10日内甲、乙监测站读数的极差相等 |
B.这10日内甲、乙监测站读数的中位数中,乙的较大 |
C.这10日内乙监测站读数的众数与中位数相等 |
D.这10日内甲、乙监测站读数的平均数相等 |