题目内容

(2013•中山一模)函数f(x)=2sin(ωx+φ)(ω>0,0<φ<
π
2
)
的部分图象如下图所示,该图象与y轴交于点F(0,1),与x轴交于点B,C,M为最高点,且三角形MBC的面积为π.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若f(α-
π
6
)=
2
5
5
,α∈(0,
π
2
)
,求cos(2α+
π
4
)
的值.
分析:(I)根据三角形MBC的面积为π求得BC的值,可得函数的周期,从而求得ω的值,再把点(0,1)代入求得φ的值,从而得到函数的解析式.
(Ⅱ)由f(α-
π
6
)=2sinα=
2
5
5
,得sinα=
5
5
,再利用同角三角函数的基本关系求得cosα的值,利用二倍角公式、两角和差的余弦公式求得cos(2α+
π
4
)
的值.
解答:解:(I)∵S△MBC=
1
2
×2×BC=BC=π
,∴周期T=2π=
ω
,ω=1

由f(0)=2sinφ=1,得sinφ=
1
2
,又∵0<φ<
π
2
,∴φ=
π
6

f(x)=2sin(x+
π
6
)

(Ⅱ)由f(α-
π
6
)=2sinα=
2
5
5
,得sinα=
5
5

α∈(0,
π
2
)
,∴cosα=
1-sin2α
=
2
5
5

cos2α=2cos2α-1=
3
5
,sin2α=2sinαcosα=
4
5

cos(2α+
π
4
)=cos2αcos
π
4
-sin2αsin
π
4
=
3
5
×
2
2
-
4
5
×
2
2
=-
2
10
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,同角三角函数的基本关系以及二倍角公式的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网