题目内容

设向量
a
=(a1a2),
b
=(b1b2)
,定义一运算:
a
?
b
=(a1a2)
?(b1,b2)=(a1b1,a2b2).已知
m
=(
1
2
,2),
.
n
=(x1,sinx1)
,点Q在y=f(x)的图象上运动,且满足
.
OQ
m
?
n
(其中O为坐标原点),则y=f(x)的最大值及最小正周期分别是(  )
A.
1
2
,π
B.
1
2
,4π
C.2,πD.2,4π
由题意可得
.
OQ
m
?
n
=(
1
2
x1
,2sinx1),
故点Q的坐标为(
1
2
x1
,2sinx1),
由点Q在y=f(x)的图象上运动可得
x=
1
2
x1
y=2sinx1

消掉x1可得y=2sin2x,即y=f(x)=2sin2x
故可知最大值及最小正周期分别是2,π,
故选C
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网