题目内容
9.已知z=$\frac{i}{1+i}$,则在复平面内,复数z所对应的点在( )A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 根据复数的几何意义进行求解即可.
解答 解:z=$\frac{i}{1+i}$=$\frac{i(1-i)}{(1+i)(1-i)}$=$\frac{i-{i}^{2}}{2}$=$\frac{1}{2}$+$\frac{1}{2}$i,
对应的坐标为($\frac{1}{2}$,$\frac{1}{2}$),位于第一象限,
故选:A.
点评 本题主要考查复数的几何意义的考查,比较基础.
练习册系列答案
相关题目
20.某校为了调查高三年级学生某次联考数学成绩情况,用简单随机抽样,抽取了50名高三年级学生,以他们的数学成绩(百分制)作为样本,得到如下的频数分布表:
(Ⅰ)若该校高三年级每位学生被抽取的概率为0.1,求该校高三年级学生的总人数;
(Ⅱ)估计这次联考该校高三年级学生数学成绩的平均分及方差(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)根据以上抽样数据,能否认为该校高三年级本次联考数学成绩符合“优秀(80分及80分以上为优秀)率不低于25%”的要求?
频数 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 3 | 13 | 19 | 11 | 4 |
(Ⅱ)估计这次联考该校高三年级学生数学成绩的平均分及方差(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)根据以上抽样数据,能否认为该校高三年级本次联考数学成绩符合“优秀(80分及80分以上为优秀)率不低于25%”的要求?
17.已知复数z=a+4i,且$\frac{z}{z+b}$=4i,其中a,b∈R,则b=( )
A. | -16 | B. | 1 | C. | 16 | D. | 17 |
20.下列推理正确的是( )
A. | 把a(b+c)与lg(x+y)类比,则lg(x+y)=lgx+lgy | |
B. | 把a(b+c)与sin(x+y)类比,则sin(x+y)=sinx+siny | |
C. | 把a(b+c)与ax+y类比,则ax+y=ax+ay | |
D. | 把a(b+c)与$\overrightarrow{a}•(\overrightarrow{b}+\overrightarrow{c})类比,则\overrightarrow{a}•(\overrightarrow{b}+\overrightarrow{c})$=$\overrightarrow{a}•\overrightarrow{b}+\overrightarrow{a}•\overrightarrow{c}$ |