题目内容
已知数列{an}的各项均为正数,记A(n)=a1+a2+…+an,B(n)=a2+a3+…+an+1,C(n)=a3+a4+…+an+2,n=1,2,….
(Ⅰ)若a1=1,a2=3,且对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,求数列{an}的通项公式;
(Ⅱ)若三个数A(n),B(n),C(n)组成公比为q的等比数列,证明:数列{an}是公比为q的等比数列;
(Ⅲ) (理科)在(Ⅰ)的条件下,求使不等式(1+
)(1+
)…(1+
)≥p
对一切n∈N*均成立的最大实数p.
(Ⅰ)若a1=1,a2=3,且对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,求数列{an}的通项公式;
(Ⅱ)若三个数A(n),B(n),C(n)组成公比为q的等比数列,证明:数列{an}是公比为q的等比数列;
(Ⅲ) (理科)在(Ⅰ)的条件下,求使不等式(1+
1 |
a1 |
1 |
a2 |
1 |
an |
2n+1 |
分析:(1)由A(n),B(n),C(n)组成等差数列,可得an+1-a1=an+2-a2,进而可判断出an+2-an-1=2,结合等差数列的定义,可判断数列{an}为等差数列,进而得到数列的通项公式;
(Ⅱ)若三个数A(n),B(n),C(n)组成公比为q的等比数列,可得an+2-a2=q(an+1-a1),进而可得
=
=q,故数列{an}是首项为a1,公比为q的等比数列,
(III)不等式(1+
)(1+
)…(1+
)≥p
可化为p≤
(1+
)(1+
)…(1+
)对n∈N*恒成立,构造函数并求出函数的最小值,可得p的取值范围,进而得到p的最大值.
(Ⅱ)若三个数A(n),B(n),C(n)组成公比为q的等比数列,可得an+2-a2=q(an+1-a1),进而可得
an+2 |
an+1 |
a2 |
a1 |
(III)不等式(1+
1 |
a1 |
1 |
a2 |
1 |
an |
2n+1 |
1 | ||
|
1 |
a1 |
1 |
a2 |
1 |
an |
解答:解:(Ⅰ)对任意n∈N*,三个数A(n),B(n),C(n)是等差数列,
所以B(n)-A(n)=C(n)-B(n),
即an+1-a1=an+2-a2,
亦即an+2-an-1=a2-a1=2.
故数列{an}是首项为1,公差为2的等差数列.
于是an=1+(n-1)×2=2n-1
(Ⅱ)若对于任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列,
则B(n)=qA(n),C(n)=qB(n),于是C(n)-B(n)=q[B(n)-A(n)],
得an+2-a2=q(an+1-a1),
即an+2-qan+1=a2-a1.由n=1有B(1)=qA(1),即a2=qa1,从而an+2-qan+1=0.
因为an>0,所以
=
=q,故数列{an}是首项为a1,公比为q的等比数列,
(Ⅲ)(理科)
由题意得p≤
(1+
)(1+
)…(1+
)对n∈N*恒成立
记F(n)=
(1+
)(1+
)…(1+
),
则
=
=
=
>
=1
∵F(n)>0,
∴F(n+1)>F(n),
即F(n)是随n的增大而增大F(n)的最小值为F(1)=
,
∴p≤
,
即pmax=
.
所以B(n)-A(n)=C(n)-B(n),
即an+1-a1=an+2-a2,
亦即an+2-an-1=a2-a1=2.
故数列{an}是首项为1,公差为2的等差数列.
于是an=1+(n-1)×2=2n-1
(Ⅱ)若对于任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列,
则B(n)=qA(n),C(n)=qB(n),于是C(n)-B(n)=q[B(n)-A(n)],
得an+2-a2=q(an+1-a1),
即an+2-qan+1=a2-a1.由n=1有B(1)=qA(1),即a2=qa1,从而an+2-qan+1=0.
因为an>0,所以
an+2 |
an+1 |
a2 |
a1 |
(Ⅲ)(理科)
由题意得p≤
1 | ||
|
1 |
a1 |
1 |
a2 |
1 |
an |
记F(n)=
1 | ||
|
1 |
a1 |
1 |
a2 |
1 |
an |
则
F(n+1) |
F(n) |
| ||||||||||||
|
2n+2 | ||
|
2(n+1) | ||
|
2(n+1) |
2(n+1) |
∵F(n)>0,
∴F(n+1)>F(n),
即F(n)是随n的增大而增大F(n)的最小值为F(1)=
2 |
3 |
3 |
∴p≤
2 |
3 |
3 |
即pmax=
2 |
3 |
3 |
点评:本题考查的知识点是等差数列的定义及通项公式,等比数列的定义及判定方法,数列的递推公式,恒成立问题,是数列与函数的综合应用,难度较大.
练习册系列答案
相关题目