题目内容

10.已知函数f(x)=$\frac{1}{1+{x}^{2}}$
(1)求f(1)+f(2)+f(3)+f($\frac{1}{2}$)+f($\frac{1}{3}$)的值;
(2)求f(x)的值域.

分析 (1)直接根据函数解析式求函数值即可.
(2)根据x2的范围可得1+x2的范围,再求其倒数的范围,即为所求.

解答 解:(1)原式=$\frac{1}{2}+\frac{1}{5}+\frac{1}{10}$+$\frac{4}{5}$+$\frac{9}{10}$=$\frac{5}{2}$.
(2)∵1+x2≥1,
∴$0<\frac{1}{1+{x}^{2}}$≤1,
即f(x)的值域为(0,1].

点评 本题考查了函数的值与函数的值域的求法,可怜虫推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网