题目内容
(本小题满分12分)
已知点
,
,动点
的轨迹曲线
满足
,
,过点
的直线交曲线
于
、
两点.
(1)求
的值,并写出曲线
的方程;
(2)求△
面积的最大值.
已知点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533145529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533176500.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533192400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533208313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533239741.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533254995.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533270309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533208313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533317289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533348333.png)
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533364703.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533208313.png)
(2)求△
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533395468.png)
解:(1)设
,在△
中,
,
,根据余弦定理得
. (2分)
即
.
.
而
,所以
.
所以
. (4分)
又
,
因此点
的轨迹是以
、
为焦点的椭圆(点
在
轴上也符合题意),
,
.
所以曲线
的方程为
. (6分)
(2)设直线
的方程为
.
由
,消去x并整理得
. ①
显然方程①的
,设
,
,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231955339561135.png)
由韦达定理得
,
. (9分)
所以
.
令
,则
,
.
由于函数
在
上是增函数.
所以
,当
,即
时取等号.
所以
,即
的最大值为3.
所以△
面积的最大值为3,此时直线
的方程为
. (12分)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533410654.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533442530.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533457524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533239741.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231955335041322.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231955335511572.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231955335821473.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533254995.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231955336131077.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533629776.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231955336601015.png)
因此点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533192400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533691300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533270309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533192400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533754275.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533769386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533785304.png)
所以曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533208313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533816707.png)
(2)设直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533832399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533847560.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231955338781090.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231955338941014.png)
显然方程①的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533910426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533925610.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533941653.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231955339561135.png)
由韦达定理得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533972898.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195534003859.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231955340191762.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195534034590.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195534050381.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231955340811074.png)
由于函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195534097634.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195534112535.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195534128609.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195534144624.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195534159425.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231955341751194.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195534190469.png)
所以△
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533395468.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195533832399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195534253323.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目