ÌâÄ¿ÄÚÈÝ

2£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó½¹µãΪF£¨-c£¬0£©£¬µãD£¨0£¬b£©£¬Ö±ÏßDFµÄбÂÊΪ$\sqrt{3}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄÀëÐÄÂÊ£»
£¨¢ò£©Éè¹ýµãFµÄÖ±Ïß½»ÍÖÔ²ÓÚA£¬BÁ½µã£¬¹ýµãP£¨-4c£¬0£©×÷ÓëÖ±ÏßABµÄÇãб½Ç»¥²¹µÄÖ±Ïßl£¬½»ÍÖÔ²CÓÚM£¬NÁ½µã£¬ÎÊ£º$\frac{|FA|•|FB|}{|PM|•|PN|}$ÊÇ·ñΪ¶¨Öµ£¬ÈôÊÇ£¬Çó³ö´Ë¶¨Öµ£¬Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÔËÓÃÖ±ÏßµÄбÂʹ«Ê½ºÍÀëÐÄÂʹ«Ê½£¬½áºÏa£¬b£¬cµÄ¹Øϵ£¬¼´¿ÉµÃµ½£»
£¨¢ò£©ÉèÖ±ÏßAB£ºx=ty-c£¬Ö±ÏßMN£ºx=-ty-4c£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬C£¨x3£¬y3£©£¬D£¨x4£¬y4£©£¬½«Ö±Ïß·½³Ì·Ö±ð´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨Àí£¬ÔÙÓÉÁ½µãµÄ¾àÀ빫ʽ£¬»¯¼òÕûÀí£¬¼´¿ÉµÃµ½¶¨Öµ£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉµÃ£¬kDF=$\frac{b}{c}$=$\sqrt{3}$£¬a=$\sqrt{{b}^{2}+{c}^{2}}$=2c£¬
ÔòÍÖÔ²µÄÀëÐÄÂÊΪe=$\frac{c}{a}$=$\frac{1}{2}$£»
£¨¢ò£©ÉèÖ±ÏßAB£ºx=ty-c£¬Ö±ÏßMN£ºx=-ty-4c£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬C£¨x3£¬y3£©£¬D£¨x4£¬y4£©£¬
½«Ö±Ïßx=ty-c´úÈëÍÖÔ²·½³Ì$\frac{{x}^{2}}{4{c}^{2}}$+$\frac{{y}^{2}}{3{c}^{2}}$=1£¬¿ÉµÃ
£¨3t2+4£©y2-6tcy-9c2=0£¬
Ôòy1y2=-$\frac{9{c}^{2}}{3{t}^{2}+4}$£¬
ÔÙ½«Ö±Ïßx=-ty-4c´úÈëÍÖÔ²·½³Ì$\frac{{x}^{2}}{4{c}^{2}}$+$\frac{{y}^{2}}{3{c}^{2}}$=1£¬¿ÉµÃ
£¨3t2+4£©y2+24tcy+36c2=0£¬
Ôòy3y4=$\frac{36{c}^{2}}{3{c}^{2}+4}$£¬
¼´ÓÐ$\frac{|FA|•|FB|}{|PM|•|PN|}$=$\frac{\sqrt{1+{t}^{2}}|{y}_{1}|•\sqrt{1+{t}^{2}}|{y}_{2}|}{\sqrt{1+£¨-t£©^{2}}|{y}_{3}|•\sqrt{1+£¨-t£©^{2}}|{y}_{4}|}$
=$\frac{|{y}_{1}{y}_{2}|}{|{y}_{3}{y}_{4}|}$=$\frac{\frac{9{c}^{2}}{3{t}^{2}+4}}{\frac{36{c}^{2}}{3{t}^{2}+4}}$=$\frac{1}{4}$£®
¹Ê$\frac{|FA|•|FB|}{|PM|•|PN|}$Ϊ¶¨Öµ$\frac{1}{4}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬Ö÷ÒªÊÇÀëÐÄÂʵÄÔËÓã¬Í¬Ê±¿¼²éÖ±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨Àí£¬ÒÔ¼°Á½µãµÄ¾àÀ빫ʽµÄÔËÓã¬ÕýÈ·Éè³öÖ±Ïß·½³ÌÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø