题目内容
10.已知数列{an}是首项为正数的等差数列,数列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n项和为$\frac{n}{2n+1}$.(1)求数列{an}的通项公式;
(2)设bn=(an+1)•2${\;}^{{a}_{n}}$,求数列{bn}的前n项和Tn.
分析 (1)通过对cn=$\frac{1}{{a}_{n}•{a}_{n+1}}$分离分母,并项相加并利用数列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n项和为$\frac{n}{2n+1}$即得首项和公差,进而可得结论;
(2)通过bn=n•4n,写出Tn、4Tn的表达式,两式相减后利用等比数列的求和公式即得结论.
解答 解:(1)设等差数列{an}的首项为a1、公差为d,则a1>0,
∴an=a1+(n-1)d,an+1=a1+nd,
令cn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,
则cn=$\frac{1}{[{a}_{1}+(n-1)d]({a}_{1}+nd)}$=$\frac{1}{d}$[$\frac{1}{{a}_{1}+(n-1)d}$-$\frac{1}{{a}_{1}+nd}$],
∴c1+c2+…+cn-1+cn=$\frac{1}{d}$[$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{1}+d}$+$\frac{1}{{a}_{1}+d}$-$\frac{1}{{a}_{1}+2d}$+…+$\frac{1}{{a}_{1}+(n-1)d}$-$\frac{1}{{a}_{1}+nd}$]
=$\frac{1}{d}$[$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{1}+nd}$]
=$\frac{n}{{a}_{1}({a}_{1}+nd)}$
=$\frac{n}{{{a}_{1}}^{2}+{a}_{1}dn}$,
又∵数列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n项和为$\frac{n}{2n+1}$,
∴$\left\{\begin{array}{l}{{{a}_{1}}^{2}=1}\\{{a}_{1}d=2}\end{array}\right.$,
∴a1=1或-1(舍),d=2,
∴an=1+2(n-1)=2n-1;
(2)由(1)知bn=(an+1)•2${\;}^{{a}_{n}}$=(2n-1+1)•22n-1=n•4n,
∴Tn=b1+b2+…+bn=1•41+2•42+…+n•4n,
∴4Tn=1•42+2•43+…+(n-1)•4n+n•4n+1,
两式相减,得-3Tn=41+42+…+4n-n•4n+1=$\frac{1-3n}{3}$•4n+1-$\frac{4}{3}$,
∴Tn=$\frac{(3n-1)•{4}^{n+1}+4}{9}$.
点评 本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.
A. | f(2)<f(-2)<f(0) | B. | f(0)<f(2)<f(-2) | C. | f(-2)<f(0)<f(2) | D. | f(2)<f(0)<f(-2) |
A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
A. | 2+$\sqrt{5}$ | B. | 4+$\sqrt{5}$ | C. | 2+2$\sqrt{5}$ | D. | 5 |