题目内容
12.定积分${∫}_{1}^{2}$$\frac{3x+1}{x}$dx=3+ln2.分析 根据定积分的计算法则计算即可.
解答 解:${∫}_{1}^{2}$$\frac{3x+1}{x}$dx=${∫}_{1}^{2}$(3+$\frac{1}{x}$)dx=(3x+lnx)|${\;}_{1}^{2}$=3×2+ln2-3=3+ln2.
故答案为:3+ln2.
点评 本题考查了定积分的计算,属于基础题.
练习册系列答案
相关题目
3.在△ABC中,若BC=3,AC=4,AB=$\sqrt{13}$,则△ABC的面积等于( )
A. | 3$\sqrt{3}$ | B. | 6$\sqrt{3}$ | C. | 8$\sqrt{3}$ | D. | 10$\sqrt{3}$ |
7.设函数f(x)=$\frac{x}{sinx}$,则f′($\frac{π}{2}$)等于( )
A. | -$\frac{π}{2}$ | B. | $\frac{π}{2}$ | C. | 1 | D. | -1 |
17.有6个大小相同的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10,现从中任取4个球,有如下几种变量:①X表示取出的最大号码;②Y表示取出的最小号码;③取出一个黑球记2分,取出一个白球记1分,ξ表示取出的4个球的总得分;④η表示取出的黑球个数,这四种变量中服从超几何分布的是( )
A. | ①② | B. | ③④ | C. | ①②④ | D. | ①②③④ |
4.某区高一年级的一次数学统考中,随机抽取M名同学的成绩,数据的分组统计表如下:
(1)求出表中m,n,M,N的值;
(2)若该区高一学生有5000人,试估计这次统考中该区高一学生的平均分数及分数在区间(60,90]内的人数.
分组 | 频数 | 频率 |
(40,50] | 2 | 0.02 |
(50.60] | 4 | 0.04 |
(60,70] | 11 | 0.11 |
(70,80] | 38 | 0.38 |
(80,90] | m | n |
(90,100] | 11 | 0.11 |
合计 | M | N |
(2)若该区高一学生有5000人,试估计这次统考中该区高一学生的平均分数及分数在区间(60,90]内的人数.